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ABSTRACT 

We present a system to detect parked vehicles in a 

typical parking complex using multiple streams of images 

captured through IP connected devices. Compared to 

traditional object detection techniques and machine learning 

methods, our approach is significantly faster in detection 

speed in the presence of multiple image streams. It is also 

capable of comparable accuracy when put to test against 

existing methods. And this is achieved without the need to 

train the system that machine learning methods require. Our 

approach uses a combination of psychological insights 

obtained from human detection and an algorithm replicating 

the outcomes of a SVM learner but without the noise that 

compromises accuracy in the normal learning process. 

Performance enhancements are made on the algorithm so 

that it operates well in the context of multiple image streams. 

The result is faster detection with comparable accuracy. Our 

experiments on images captured from a local test site shows 

very promising results for an implementation that is not only 

effective and low cost but also opens doors to new parking 

applications when combined with other technologies. 

I. INTRODUCTION 

The motivation behind the work in this paper is the 

desire for a parking system that aims to reduce frustration 

for drivers in their attempt to hunt for a free parking lot. 

Especially under heavily utilised conditions, navigating a 

parking site and competing with other drivers for a free spot 

is often a time consuming and frustrating task. Current 

advanced parking systems at various sites in Australia 

implements a ―sensor-to-lot‖ approach with signages near 

the site to assist drivers. Although such an implementation 

provided assistance to drivers, there are many drawbacks. 

By using a sensor for each parking lot, a large parking 

site becomes costly to implement when the costs of fitting 

sensors and wiring them to the signage is considered. 

Consequently, the implementation is kept simple to contain 

the costs. As a result, the implementation failed to take 

advantage of the collective information provided by the 

sensors. In situations where the site is heavily utilised, 

drivers quickly face frustrations because (i) signage  

information become inaccurate; (ii) sensor lights (that 

indicated free lots) become difficult to spot; and (iii) the 

effectiveness of light indicators are limited to a small range 

due to the ―line of sight‖ approach. This a ―local optimal‖ 

solution since drivers in a busy parking site can only depend 

on available information in the vicinity rather than the 

collective information provided by the sensors. 

In search for a better car park system than the 

commonly used ―sensor-to-lot‖ approach, we discovered 

that many research do not address the problem of informing 

drivers about free parking lots, and using that information 

effectively to reduce the frustration of drivers. A different 

solution is thus called for that started this investigation. As 

smart phones connected to the Internet via 3G networks 

become ubiquitous, we foresee that they may present the 

answer to ease, if not, end a driver's car park hunting 

nightmare. 

Our premise is that if drivers are informed in advanced 

about the situation of a parking site, it will enable decisions 

to be made to avoid the frustrations of not been able to 

secure a free parking lot. Extending this idea, it would 

become possible to use the technology in ways such as 

enabling guidance to parking lots on a large parking site, 

directing drivers to alternate parking sites under busy 

situations, and so on. 

For such a system, the sensor in each parking lot needs 

to be wired to a server so that they can be mashed up with 

information on the Web to create the applications we 

envisioned. Doing so however will significantly increase 

infrastructure costs. The solution is to replace multiple 

sensors with a single IP-enabled camera. By reducing the 

number of input points, we lower costs but now require a 

method to detect the presence of a parked car. Our proposal 

is novel in terms of marrying image processing technologies 

and machine learning concepts to deliver a cost effective 

and accurate solution. Such a solution will have a good 

degree of accuracy and in the presence of multiple image 

streams, requires fast processing capacity on a cost-effective 

computer. 

We begin with a discussion of related works in Section 

II before moving on to the discussion of our solution in 

Section III along with experimental results in Section IV. 

From this base algorithm, we improve performance of the 

algorithm in the context of processing multiple image 

streams on a single compute device. The performance 

enhancements were described in Section V. Lastly, 

conclusions of our work is found in Section VI. 
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(a)  (b)  

Fig. 1. (a) A reference image where the parking lot is 

empty. The same set of filter is applied to the 

reference image as well as the incoming image 

stream represented by (b). For images streams 

where the vehicle colour is light (as in (b)), it is 

rather easy to obtain a high detection accuracy. 

II. RELATED WORKS 

Our work comprises of two areas: (i) the design of 

smart car parks and (ii) the detection of free parking lots in 

images. On the design of car park systems, which is not the 

main discussion point of this paper but relevant, our survey 

revealed a focus on a number of key areas. Many address 

problems in aspects of parking such as smart payment 

systems [1]-[3] transit-based information [4], [5], automated 

parking [1], [6]. In these areas, the problems and objectives 

addressed are different from our motivation. 

Two areas of car park design research are however of 

interest to us. The first is e-Parking systems such as those in 

[7], [8]. Most e-Parking systems are Web-based where 

drivers look for available parking spots around points of 

interest. A driver can also book a parking space in advanced 

using either SMS or via the Web. In a way, our proposal to 

use modern smart phone is the evolution from the works 

reported in this area. While this paper attempts to report the 

detection mechanism, its design is motivated by the desire to 

eventually create such a system where smart phone can be 

used to book car park spaces, get car park information as 

well as other applications that use the collective information 

generated from the cameras. Another difference from 

e-Parking systems in our case is the shift from the focus of 

Web-based systems to the focus on applications that run on 

the smart phone utilising the information made available on 

a Web server. 

The other area of car park design research is Parking 

Guidance and Information Systems (PGIS) represented by 

the works of [9]-[12]. The key premise of PGIS is the ability 

to provide guidance to drivers in finding a park. While 

similar in motivation, our work differs from such systems in 

terms of the proposed implementation. Generally, PGIS is 

deployed using signages around the car park facility and in 

limited cases, encompassing the entire city area. These 

signages emit collated information from vehicle detection 

sensors to provide drivers information about free parking 

lots. In that sense, parking information is not personalised 

and is only available when the driver is near the physical 

facility. With smartphones and 3G networks, we envision a 

system that will publish car park information down to its 

available lot details providing individual smartphones the 

capability to filter information to the needs of the individual 

driver. Additionally, such a model opens up various 

possibilities for developers to create novel applications 

arising out of the published information. Yet to achieve all 

the above, a detection system that can work with such new 

technologies are required. Hence, the motivation of the 

work reported in this paper. 

On the issue of detection, one approach is the use of 

machine learning techniques, where labeled images are used 

to train a classifier that will be deployed to detect the 

presence of a car. Here, different classifier technologies, 

methods of training and the structure of classifiers were 

explored. For example, [13] proposed a 8-class Support 

Vector Machines (SVM) classifier with probabilistic 

outputs while in [14], a simple (linear hyperplane) classifier 

was used to achieve above 90% accuracy by optimising the 

information of individual features in an image. Others used 

image processing techniques to achieve similar results. 

Interpretation of image sequences using visual surveillance 

techniques was proposed by [15] while [16] and [17] tracks 

movement of vehicles as the basis for determining free 

parking lots. 

For [14], the major drawback is in the scalability of its 

solution. For an 8-class SVM classifier, the system is only 

capable of dealing with 3 parking lots in a single image. If a 

single camera captures 4 parking lots, a 16-class SVM 

classifier is needed. As the effort and computation 

requirements double with every additional parking lot, the 

solution's practical significance is limited. In the area of 

image processing techniques such as [15]-[17], the detection 

mechanism requires incurs either high computational costs 

or  

large memory space. In comparison, our approach is far 

more scalable than the proposal in [14] and requires less 

computing resources than those proposed in [15]-[17]. 

 

  
(a)  (b)  

Fig. 2. The only difference in the two images is the position 

of the sun. As a result, the intensity level affected the 

filters' output as seen in (a) and (b) where edge 

detection and binarisation filters are applied using 

default parameter values. Clearly this impacted 

detection accuracy, especially in the case of the first 

parking lot. In our algorithm, we used a simple 

statistical method to adjust the filter's parameters 

on-the-fly so that it can be compared to the 

reference image accurately. 

III. OUR APPROACH 

In the context of image processing, which this system 

now depends on, the problem is a classic case of object 

detection [18], [19]. The challenges of object detection are 
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the high variability in appearances of objects in a given class 

(in our case, parked cars) and the added variability  

between instances of the same object due to alternate 

viewing angles and/or conditions (e.g., the same car viewed 

from the front, side, or back). As images are taken as 

specific time intervals from different cameras, we now have 

multiple image streams to be processed. The problem thus 

calls for real-time efficiency and accuracy. 

To achieve this, we first address the question of accurate 

detection. As we learnt in Section II, a popular approach is 

to use a classifier to distinguish between an image belonging 

to a target class (i.e., car present in lot) and one that doesn't 

(i.e., car not present in lot). Usually a set of vectors, with 

each representing an image, is used in the training of 

classifiers to find discriminating features that separates two 

or more classes. In the case of the SVM [20], well-known 

for its binary classification accuracy under small data 

samples and high dimensionality, the set of discriminating 

features are identified by the hyperplane. 

Simply put, the concept of a hyperplane is a cut that best 

separates the feature spaces into two distinct classes. In 

SVM, this cut is determined via the learning process using a 

series of vectors and its associated class label. The issue with 

this process is the dependency on the learning algorithm, 

which itself is dependent on the data, to find the best cut that 

defines the hyperplane. To increase accuracy, much of the 

work focuses on the training data either by stripping the 

vector down to key feature spaces and/or increasing learning 

instances. In any case, the idea is to reduce the noise in the 

training instances to allow a ―cleaner cut‖ and hence, a better 

classification accuracy. We were however inspired by a 

different approach. 

1. Recreating the Ideal “Hyperplan” 

We asked if we can define the hyperplane directly. If we 

can do so, we will be able to eliminate the noise from the 

training instances giving rise to a significant increase in 

accuracy. In pursuit of our ideal hyperplane, we begin by 

learning how the most accurate classification machine, i.e., 

the human subject, determines the presence of a free parking 

lot. Since we are no psychologist, we turned to existing 

literature for some guidance. Fortunately for us, Zhao and 

Nevatia [21] reported such an experiment with some useful 

findings. In the test they conducted, the factors most people 

mentioned about knowing the presence of a car are (i) their 

rather rectangular shapes; (ii) the visibility of front and rear 

windshields; (iii) evidence of a parking lot; and (iv) 

environmental conditions such as shadows or light.' 

During classification, these factors are the 

discriminating feature spaces to be used for detecting the 

presence of a car in an image. And in the specific case of the 

SVM, they will be the hyperplane we are seeking when 

feeding the learning instances to the SVM learner. While 

conceptually this is easy to explain, trying to implement this 

within the SVM isn't as straightforward. After all, the 

algorithm was designed to learn about the cut rather than to 

be told of the cut. While it is possible to process images of 

the noise to get close to the ideal hyperplane, it is not 

possible to automate this under multiple streams of images. 

This led us to consider an alternative. 

In our opinion, these factors are clearly the key feature 

spaces to use in determining the presence of a car when 

given an image. In other words, the human subject would 

filtered other information focusing on the key features to 

arrive at the conclusion. In lingo of SVM, this would be the 

hyperplane we seek when feeding the learning instances to 

the SVM learner. 

 

  
(a)  (b)  

Fig. 3. Final image used to detect presence or absence of 

car: (a) before applying the binarisation filter; (b) 

after applying the binarisation filter, which 

improves accuracy. Clearly, the reason for the 

improved accuracy is the wider margin between 

the two intensities after the binarisation filter. 

While conceptually this is easy to explain, trying to 

implement this within the SVM isn't as straightforward. 

After all, the SVM was designed to learn about the 

discriminating features rather than been told what they are. 

The immediate and apparent solution is to produce 

learning instances containing only these feature spaces. 

Instead of going with this option, we toyed with an 

alternative approach: why not explicitly code the classifier 

instead of feeding our psychological observations into the 

SVM learner? Clearly, the benefit of doing so is 

performance, i.e., a custom classifier exploiting the 

psychological observations will result in real-time 

processing capabilities that the application needs. The idea 

of an accurate and fast classifier is very attractive to us. 

Hence, our decision to implement these findings using 

image processing techniques. 

We first convert the colour images into 8-bit grey scale 

images allowing each pixel to be represented exactly in a 

byte for the ease of implementation. For now, we restrict 

ourselves to the analysis of a single parking lot taken in an 

image. Our solution will easily and directly scale to multiple 

parking lots. With the first factor been the shape, our 

intuition is to begin by applying an edge filter on the image. 

As shown in Figure 1(b) and Figure 2(a), the edge filter 

strips the noise in an image by dropping texture and tonal 

details but leaving behind structural properties to allow an 

object to be determined. 

The next factor is crucial to the speed and accuracy of 

our proposal. The experiments at our test site revealed that 

the key determinant of an unavailable park lie in the 

visibility of the windshields. The windshields are glass 

surfaces that reflect light giving off a higher intensity within 

the parking lot relative to its environment. Even in dim 

multi-story parks, this remained the case even after the 

image was stripped off its details by the edge detection filter. 
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Our algorithm uses this key observation, which will be 

discussed in Section III-B. 

 

The third human consideration is to look for evidence of a 

parking lot. In our case, this factor is built into the algorithm 

as we deal with a per parking lot basis during detection. For 

an image taken, we will predefine the boundary coordinates 

for each parking space in the image. In fact, the boundary 

coordinates defined an area smaller than the parking lot. In 

our experiments, we find that this gave rise to better 

efficiency and accuracy when the area is concentrate around 

the spot(s) where the windshields, i.e., factor (ii), are likely to 

appear. 

The last human observation is by far the most 

challenging. Car colour and size, and varying lighting (or 

weather) conditions can cause false positives (or negatives) 

in the detection outcomes. For a dark car, there may be 

insufficient light from the windshield to conclude the 

presence of a car (i.e., false negatives). Likewise, a small car 

will give bigger variation in terms of where they can park 

within a lot space. And with windshields a key determinant 

in our algorithm, over variation in the position of the 

windshield will increase false negatives. Interestingly, 

dealing with lighting conditions was much easier than 

dealing with car colour and size. The issue with lighting 

conditions is mainly constrained to open parking spaces 

with natural lighting. As weather conditions (e.g., position of 

the sun) vary, the detection accuracy also fluctuates. 

On weather conditions, we found rain to be an issue 

when our test camera was not properly sheltered. This 

caused significant problems when we applied the edge filter 

leading to false positives. This was easily overcame by 

mounting a shelter on the camera. Unlike fixed light sources 

in sheltered parking lots, the movement of sunlight throws 

varying light intensity (i.e., shadows) on the same parking 

lot resulting in both false positives and negatives. As 

Figure~2 showed, the movement of sunlight caused 

presence of noise when passing images through the edge 

detection filter. Our approach is to use multiple reference 

images to compensate the varying levels of light due to the 

sun's movement. Instead of a single reference image (such 

as Figure 1(a) taken at time ), we used an array of reference 

images taken throughout the day to allow variation in the 

threshold thereby minimising the errors. With this intuition, 

we discuss the algorithm in the next section.  

2. Algorithm 

Let   *             + be the set of cameras in a 

car park facility. For any camera  , we define a tuple 

〈        *          +〉 such that        is a 

parking lot monitored by  . We also define a tuple 

〈    〉  such that    {          }  is a set of 

reference images taken by    when the lots in   are 

unoccupied and 

      is a reference image taken at some time period. 

For any       the rectangular detection zone 

 ( )   〈(     ) (     )〉 marks the area where the 

light intensity is measured in   and also the image stream 

  captured by  , which we define as a tuple 〈     
 *  

    
    +〉.  

In defining  ( ), the coordinates are usually within 

the boundary defined by the parking lines and located 

approximately where the windshields are likely to appear 

for a given camera angle. As seen in Figure 3, after edge 

detection and binarisation, the edges of the windshields 

become a means to identify a change in the intensity reading 

in the `middle' of the parking lot thus, suggesting the 

presence of a car. While it is possible to work on Figure 3(a), 

we find better accuracy after the binarisation filter as the 

margin of error is significantly increased   as shown in 

Figure 3(b). 

The detection is made by comparing the intensity 

reading between   and    for a given       
〈     〉  such that the intensity difference in the area 

defined by  ( )  on       〈   〉   and 

       〈    〉 is above  In determining  , the light 

intensity threshold that suggests the presence of a car, some 

calibration will be expected. This calibration is made with 

respect to the site condition and we believe is acceptable for 

a system of this nature. At our test site, we set this at a value 

of 15%. In other words, if the light intensity measured from 

the reference image   on the area determined by  ( ) 

is 1, then the light intensity measured from   on the same 

area must be > 1.15 to conclude the presence of a car. The 

calculation to achieve this is given in Algorithm 1. 

Since our images are grey scales, each pixel carries a 

value in the range of 0 … 255, where 255 is a white that 

indicates the highest light intensity on the pixel. For any 

given  ( ), we are interested in the average intensity of 

light defined by  ( )   on     and          

respectively. We then compute the ratio to determine if the 

intensity in    is   higher than  . Equation 1 

summarises this calculation. 

 (    )   
 

 ( )
∑

  
(   )

 (   )
  {

            
                 

         (1) 

 

As mentioned and is the case with any threshold, this 

needs to be adjusted to suit individual cases. Once camera 

positions are fixed, reference images may be taken and the 

image streams can be used to empirically work out the best 

value of   for a given camera. Once set, any variation in 

the environment is compensated using a different       

instead. Thus   is critical in cancelling out any noise that 

may impede accurate detection. We note that this calibration 

process is far more efficient than some machine learning 

approach, where training and verification can take longer. 

We also apply an additional binarisation filter to 

eliminate pixel noise to achieve a cleaner wire frame of a car. 

We find that doing this will improve accuracy further when 

pixel values are cleaned up to either a value of 0 or 255. The 

challenge of using this filter is the need to provide a 

threshold  , where a pixel value >   will result in a white 

(and black otherwise). It is tempting to simply go for the 

mid-value of the intensity range, i.e., setting   = 127. 

However, doing so will not allow for varying light intensity 

in different photos and can, as our experiments show, result 

in a poorer detection accuracy. To determine the right  , we 

first find the average intensity in the image. Next, we adjust 
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this mean value by adding 1-standard deviation to the 

threshold to derive  , which is the basis for the binarisation 

filter. We find that by adding 1-standard deviation to the 

mean intensity of the image, the results are more accurate as 

image noise are removed. 

 

Algorithm 1 DetecCars (*〈           〉  +) 

    for all        do 

                                (  ) 

                               (  ) 

 

        

   *                                  + 

                       (   ) 

                        (    ) 

 

        if   (     )     then 

            print Occupied for      

        else 

            print free for      

        end if 

    end for 

IV. EXPERIMENTAL RESULTS 

In determining the effectiveness of our approach, we 

will benchmark our technique against that reported in [13]. 

Their proposal uses the SVM, where multiple classifiers 

were built to determine the availability of 3 parking lots. 

Whenever possible, we replicate the empirical conditions 

used in [13] so as to give an accurate comparison. 

In our setup, the same number of samples, i.e., 300, 

were taken on 3 parking lots as shown in Figure 1. Like our 

benchmark, the samples were taken over a day from the 

same position accounting for lighting conditions, changes in 

the colour intensity, and movement of vehicles in and out of 

the parking lots. We also experienced rain conditions that 

wasn't in the plan but nevertheless provided additional 

consideration in the design of such a parking system. Unlike 

the benchmark however, we do not require prior training. 

Instead, we define  (  ) ,  (  ) ,  and  (  ) ,  

indicating where the windshields are likely to be. We also 

spent another day taking images for   at 4 interval periods: 

early morning, late morning, early afternoon and late 

afternoon. We then recreate the 8-class SVM reported in the 

benchmark by replicating the training process. In doing so, 

the immediate difference is the amount of overheads 

required in the preparation of the benchmark method. For 3 

parking lots, 2400 patches (300 for each class) of the image 

is needed. Acquiring these patches proved a very time 

consuming process that is unattractive when scaling up to 

large parking sites. Compared to our approach, there is no 

need to involve the mammoth task of training, which of 

course is an immediate benefit. 

In [13], a range of classification accuracies were 

reported using different number of training samples. In this 

paper, we work directly with the highest number of samples 

so as to yield the most accurate version of their classifier. 

We then compare this accuracy level against our work using 

the same test images. 

 Approach by 

[13] 

using 2400 

samples 

Proposed 

Technique 

(w/o 

training 

samples) 

against SVM  

(3 spaces) 

85% 93% 

against SVM  

(3 spaces) 

93.52% 93% 

against SVM  

(1 spaces) 

83% 97% 

Fig. 4. A comparison of detection accuracy using highest 

level of training samples and the Markov 

Random Field (MRF) reported 

in~\cite{WHW+07} against the proposed 

technique, where such machine learning training 

is non-existent. Instead, encoding the human 

heuristics into simple image processing actions 

and time-related calibration provided 

comparable accuracy and significant reduction 

in training time. 

On our tests (Figure 4), our approach achieved 93% in 

classification accuracy for 3 parking spaces and a very high 

97% on a single parking space. This is on par with the 

reported 93.52% accuracy in [13], when a high level of 

training samples is used with the Markov Random Field 

(MRF) correction (for 3 spaces). When training samples are 

dropped, our technique becomes immediately attractive 

when the high cost of training is eliminated. In our case, the 

inaccuracies were a result of small cars giving rise to a 

bigger variation of the windshield positions within the 

parking lot. In such a situation, the light intensity gathered by 

our algorithm was too low to trigger detection, i.e., false 

negatives. 

In [13], the average conflict rate was also measured. 

This measure reflects the error as a result of camera angles 

capturing the presence of other cars beside the lot of interest, 

e.g., Figure 3(b) when camera angle is positioned on the left 

of the image. Again on this measure, the benchmark 

performed better only when there are sufficiently high 

training samples. In many cases, we can improve on this 

measure by reconsidering the camera positions. In positions 

where the overlap is minimal, we can improve on this 

measure without changing any part of the algorithm. We do 

recognise that this suggestion may increase the cost of the 
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system but it will really depend on the decision maker to 

decide the balance to strike with accuracy on this matter and 

the costs. 

The final measure is on the level of false positives. The 

challenge of false positives arises out of changing light 

conditions. Primarily due to the movement of sunlight in 

open spaces and the colour of the car in sheltered parking 

sites, our approach has a rate of 3.86% on average. While 

this is higher than the proposed SVM and MRF correction 

method in [13] (1.25%), it performs better than the 

benchmark without the MRF correction (4.39%). We 

intend to improve on this measure as part of our future work. 

Instead of just increasing the number of reference images in 

 , we will consider similar correction  

techniques like the MRF used in the benchmark. On the 

performance of the false negatives though, our performance 

does not seem to differ greatly from the techniques 

evaluated (as reported in Figure 5). 

V. PERFORMANCE ENHANCEMENTS 

So far, the discussion dealt with a single image stream 

  from a single camera      . Typically, a large parking 

facility will require multiple cameras (i.e.,  ) to capture all 

available lots 〈      〉, which means that multiple image 

streams (       )are generated. To process every frame 

(or image) on the server will incur expensive computational 

costs that are undesirable when (i) the number of image 

streams are high and (ii) the rate at which each camera 

captures images are also high. As such, to avoid a spike in 

computational load, we need to further investigate how 

multiple image streams can be computed efficiently. As 

noted in Section IV, as we reduce the amount of pixels, we 

sacrifice on accuracy suggesting that we maintain each 

image at a reasonable size. Likewise if the capture rate is 

low, then the timeliness of updating the facility information 

will be delayed. Since it is undesirable to compromise on 

either the image size or capture rate, we need an alternative 

way to ensure performance do not take a hit in the presence 

of multiple image streams.  

A crucial observation is that the high capture rate of 

each camera also meant that we experience a high rate of 

―similar situation‖. That is, between two consecutive frames 

(or images) from the same camera, the probability that a 

parking lot is ‗free‘ or ‗occupied‘ remain very high. In other 

words, there is no need to compute  (     )  (in 

Algorithm 1) on every image in the streams   since after 

each expensive compute, the outcome has a high probability 

of being the same as the previous frame. This led us to ask if 

we can devise another algorithm that is highly compute 

efficient at detecting a change between two consecutive 

images? If we can develop such an algorithm, then we only 

need to compute  ( ) when we think there is a change in 

the situation. As such, the algorithm need not be absolutely 

accurate (i.e., we can accept a degree of error) as long as it is 

highly efficient at telling us if we need to apply Algorithm 1. 

This led to the question of whether we can develop an 

efficient change detection algorithm. 

Conventional change detection algorithms use different 

methods to detect changes between two consecutive images. 

The most basic method is to take an image stream   as the 

input and for each image     , a binary image called a 

―change mask [22]-[24] is generated by computing each 

pixel    of   
 and      of     

 using  (       ) , 

where  ( )     if       has changed significantly 

from        
 . Otherwise,  ( )   . Computing the 

change mask is straightforward but pose two crucial issues. 

First, the method to compute a change mask has a compute 

complexity that i proportional to the size of the image 

resulting in an equivalent complexity as  ( ) . Second, 

detecting a change is not easily from the change mask as it 

has been found to be highly application specific [25]-[27]. 

Of course there are other techniques proposed to improve 

change detection between two images and the problem has 

a long history with many other computer problems such as 

image registration, object segmentation and tracking, etc., all 

of which bear a substantial literature of their own. 

 False Accept Rate False Reject Rate 

against SVM  

(3 spaces) 

4.39% 8.73% 

against SVM (3 

spaces) + MRF 

1.25% 3.56% 

against SVM  

(1 spaces) 

4.85% 8.12% 

against 

proposed 

technique 

3.86% 5.34% 

Fig. 5. A comparison of false positives (or false accept), 

i.e., wrongly detected the presence of a car in a 

parking lot and false negatives (or false reject), i.e., 

wrongly detected the absence of a car in a 

parking lot, using the techniques in [13] against 

the proposed technique. 

The biggest challenge in change detection lie in the lack of 

an agreed uniform definition of what constitutes to a 

―significant change‖ between two images. Can ―significant 

change‖ be determined by geometric changes [28], [29], 

such as a difference in the pixel intensity [29], [30]? Or do 

we require more sophisticated techniques that use 

hypothesis tests that often require complex compute on the 

images, such as comparing the histogram of two images and 

computing the statistical likelihood of a change [31], [32]? 

Regardless of the accuracy or compute efficiency of these 

mechanisms, we note that our problem do not require the 

presence of such complex algorithms. Again this argument 

is driven by our need for more compute efficient methods 

than  ( ). Since we can afford false positives, i.e., wrongly 

detecting that a change in situation has happened, we can 
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opt for a very simplistic approach. This method, when 

combined with the right probability distributive function, 

actually result in a significant reduction of compute costs. 

1. Algorithm 

The key idea behind Algorithm 1 is the encoding of 

human observation as a way to classify the presence or 

absence of a car within a park. This approach has the 

advantage of not requiring training but instead uses 

reference images and calibration to determine if the light 

intensity suggests the presence of a car in a parking lot. In 

order to achieve the accuracy required in Algorithm 1's 

 ( ), (i) three image filters were used and (ii) the intensity 

of all pixels within the specific area of the parking lot was 

determined. 

One way to be faster than Algorithm 1 is to reduce the 

number of filters used and the number of pixels computed in 

 ( ). With the image filters, hardware acceleration can be 

used by acquiring cameras that take grey scale images for 

example. We therefore focus on the number of pixels to 

process. Our observation is that if a situation change is 

detected in image   , then the likelihood of a new  

situation arising in      is very low. In other words, the 

probability of a situation change  ( ) following a detected 

situation change in    will only increase with subsequent 

shots, i.e., (        )   (          )  …. This 

general observation allows us to apply an exponential 

distribution  ( ) to the number of pixels assessed. Recall 

in computing  ( )  an area  ( )  marked within the 

parking lot is considered. Since   (        )    (in 

most cases), we only need to sample a small number of 

pixels in  ( ) that  ( ) checks, i.e,.  ( )    ( ) , 
where     is the number of pixels defined in the detection 

zone. Overtime and guided by the statistical distribution, we 

progressively increase the amount of pixels checked in 

  ( )  resulting in a net reduction of pixels computed 

between two situational changes. As with the use of 

reference images   to compensate for differences in the 

environment,  ( ) needs to be calibrated according to the 

traffic flow of the parking facility. Such calibration can be 

achieve by adjusting two parameters (   ) in   where 

their relationship is given as 

 ( )     
 

 
 

   
 

  (2)  

In our case,   is the location parameter in   that 

determines, when the exponential distribution applies to 

 ( ). If it should start after the 10th image (i.e., at       

following a situation change in   ), then     . The 

scale parameter   equates to the average time a car 

remains in a parking lot. So if a car remains in the parking 

lot on average of 3 hours, then     or  = 180 (minutes) 

depending on the granularity of the exponential scale used. 

In terms of implementation, a crucial step is in the 

choice of the pixels to select from  ( ) for such quick 

assessment. Clearly if only a small number of pixels are 

selected, then those pixels should not be constrained to a 

specific area within  ( ). Otherwise, the degree of error 

can be high. To minimise the occurrence of such errors, the 

selected pixels should continue to test the maximum area 

possible in  ( ). We achieve this by aligning the number 

of pixels from  ( )    ( )  on an imaginary line across 

 ( ). The pixels are equally spaced out on this imaginary 

line as points to test intensity readings. The readings taken 

are then compared to the pixel readings in the reference 

image. When the difference exceeds    we trigger a full 

compute using  (     )  Figure 6 elaborates this 

process in detail while Algorithm 2 incorporates this process 

in  (       ) as shown. 

The pixels that lie on this imaginary line become points 

in  ( ) where readings are sampled. No doubt such 

readings will not achieve a high accuracy but since we 

already have prior knowledge of the existence of a car (or its 

absence), we only use the result to decide if there may be a 

change in situation. As such, the results will only lead to 

false positives that trigger the compute of  ( ) on all 

pixels in  ( ) to verify if a situation change has occurred. 

These 

(x1, y1)

(x2, y2)

Z(p)

Number of pixels determined 
by f() and Z(p) spaced equally 

on imaginary line.

(x1, y1)

(x2, y2)

Z(p)

Imaginary line where pixels are 
placed. As more pixels are used on 

images further away from ri, aligning 
the pixels on these lines maximises 

coverage of Z(p).

Fig. 6. A visual explanation of how  (       ) is 

computed. As described in Section V-A, we first 

determine the number of pixels to select by computing 

 ( )    ( ) , where   is the  -th image since 

Algorithm 1 detected a situation change. So if 

 ( )    ( )  = 9, then we will select 9 pixels along the 

imaginary line that stretched across  ( ) as shown. 

These 9 pixels are where the intensity readings are 

taken on   and the reference image   . The 

magnitude of the average intensity is then taken and 

compared against   and it the threshold crosses, we 

invoke the more computational intense but accurate 

 (     ). Note again that with less pixels used, it 

means that the  -th frame is more recent to the frame 

that had a situation change that we modelled as  ( ). 

false positives will not affect the accuracy of the system 

except to waste some compute time. Nevertheless, the 

overall result of such fast compute reduces the number of 

triggers on a full compute with  ( ) and therefore, we 

continue to improve overall performance. Algorithm 2 

shows the changes made to Algorithm 1, where 

 (       ) and   capture the essence of our discussion 

in this section and we present performance results of this 

system next. 

 

Algorithm 2 DetecCars (*〈           〉  +) 

    for all        do 

                                (  ) 

                               (  ) 
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   *                                  + 

                       (   ) 

                        (    ) 

 

        // sample some pixels as determined by 

        // distribution  ( ) and  ( ) 

        if   (       )     then 

             // initiate full compute as difference 

             // is above threshold,   

             if   (     )     then 

                 print Occupied for      

             else 

                 print free for      

             end if 

        end if 

    end for 

2. Experimental Results 

Our earlier empirical evaluation in Section IV focused 

on the accuracy of the proposed solution. While the solution 

achieved good accuracy, Algorithm 1 alone failed to 

provide decent real-time operation on a single computer. 

This led to the performance enhancements that result in  

Algorithm 2. In this section, we report our performance 

evaluations of these algorithms. 

Our implementation uses C# and the .NET‘s built-in 

graphics library for bitmap manipulation. The image filters 

were drawn from an Open Source library called 

AForge.NET (http://www.aforgenet.com) to allow us to 

quickly implement the algorithm to test the viability of our 

proposal. Our first test is to validate the performance of 

Algorithm 1. Figure 7(a) shows the number of pixels for 

each image profile and its corresponding average runtime of 

50 images. As the Y-axis is a log scale, we can see that as 

the number of pixels double from one image profile to 

another (e.g., 640x480 to 1024x768), we see the runtime 

quadruples. As such, although high resolution images 

provide better accuracy for Algorithm 1, we are constrained 

by the runtime costs. Figure 7(b) shows the average 

accuracy achieved over 50 images at different sizes. A 

significant improvement in accuracy is seen when the image 

size goes to 640x480. Recall that the size of  ( ) is a 

region of the profile and not the entire image, it is clear that 

this profile provided the minimum number of pixels 

required in  ( )to get an accurate reading. Although the 

image size of 1024x768 gave further accuracy, its runtime 

performance isn‘t ideal. Interestingly, as the image scales 

beyond 1027x768, accuracy drops suggesting the impact of 

noise on higher resolution images. Our attempt to recalibrate 

  did not result in any significant improvements. However 

this should not be a concern given that the focus of such a 

system is to be cost-efficient and therefore, we expect to 

work with images of lower resolution to begin with. The 

performance and the error considered, we conclude that the 

image size at 640x480 yield a good result. Any image larger 

than 640x480 yield noticeable ‗pauses‘ in intensity 

computation while using images smaller than 640x480 

lowers accuracy. Even with variation to    our empirical 

evaluation indicates that accuracy and size is optimally 

balanced at 640x480. 

The next performance evaluation takes into account of 

120 images with 3 situation changes. We then measure the 

runtime to complete processing all 120 images. We further 

 

  

(a)  (b)  

Fig. 7. Runtime performance of computing different 

image sizes using Algorithm 1: (a) average 

runtime of 50 images over different sizes along 

with the number of pixels in each image profile 

- y-axis is log scale; (b) average detection 

accuracy over 50 images at different sizes. 

Comparing (a) and (b), we conclude 640x480 as 

a good size on our hardware. 

note the number of times  (     ) was invoked in 

Algorithm 2 so as to determine the false positive percentage. 

For this test,  ( )  was configure with     and 

      Setting   to 0 means we start sampling  ( ) 

immediately following a situation change. Further we 

expect a car to leave or occupy a parking lot every 10 

minutes (i.e.,  ). The sequence of 120 images (i.e., a shot 

taken every minute) hence correspond to 2 hours of image 

shots taken on the same 3 parking lot space depicted in 

Figure 1. We then vary   over a number of repeats on the 

same set of images recording the runtime performance in 

Figure 8. 

Figure 8(a) shows the runtime performance of 

Algorithm 1 against Algorithm 2 (which uses the 

performance enhancements outlined in Section V-A). Note 

that      applies only to Algorithm 2 since Algorithm 

1 does not use any optimisation. By avoiding a full compute 

in Algorithm 2, we see significant 36% improvement in 

performance (from 5.03 seconds to 3.19 seconds). As we 

increase  , further performance improvements is seen in 

Figure 8(b) but at the expense of lower accuracy. We have 

not reported this accuracy since it depends entirely on when 

situation changes take place against the setting of  . 

Nevertheless it is suffice to note that as   increases, we will 

compromise on accuracy. Further to conclude the 

experiments, it is important to appreciate that the absolute 

runtime improvements quickly add up when multiple image 

streams are to be processed.  

VI. CONCLUSION 

Despite advances in parking systems, we continue to 

face frustrations at heavily utilised parking sites. Current 

systems fail because drivers have no prior access to 
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information until arrival. And upon arrival, much of the 

search for a free park is ad-hoc based on information from 

signages and light indicators within the driver's line of sight. 

Our proposed system will ease driver frustrations through a 

system that integrates Internet-enabled smart phones. In 

Australia and many parts of the world, the ubiquitous 

adoption of such devices has made it feasible for drivers to 

access live parking information prior to arrival. When 

combined with other technologies, this opened up 

possibilities of a parking system that could inform drivers 

before arrival at site, direct drivers to parking lots, and thus 

regulating traffic in the surroundings. Our immediate future 

work is therefore to build applications on smart phones to 

demonstrate these ideas coming off a “camera-to-server” 

approach. Critical to achieving this is the development of a 

detection mechanism to fit the “camera-to-server” model, 

which is cost effective and technically viable. As argued 

earlier, existing systems and current experimental projects 

do not consider aspects of this problem. The work reported 

in this paper thus fills this gap. 

The research contribution is a method to enable a 

―camera-to-server‖ implementation by balancing the costs 

against the features needed to deliver the parking system. 

Unique characteristics of our approach include the applied 

insights of human detection (as reported in the 

psychological test conducted by Zhao and Nevatia [21]) in 

our algorithm, and the explicit coding of a detection 

behaviour based on the learning characteristics of a SVM 

learner. By explicitly coding the classification behaviour of a 

SVM learner, we eliminated the cost of training. At the 

same time, we eliminated noise that would otherwise be 

embedded in the hyperplane through the normal training  

process. This gives us the improvement in detection 

accuracy. The performance enhancements that follow 

reinforce the practical utility of this method by reducing the 

number of full compute through effective use of an 

appropriate statistical distribution. The final result is a 

detection mechanism that supports the ―camera-to-server‖ 

approach with high efficiency and accuracy in an 

environment with multiple images streams.  
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(a)  (b)  

Fig. 8. Runtime performance comparison between 

Algorithm 1 and Algorithm 2: (a) runtime 

of a single image stream containing 120 

images with      and 3 situation 

changes; (b) the same image stream used in 

(a) but with different   settings. Note that 

since Algorithm 1 does not use  , its 

runtime remains consistent while 

Algorithm 2 shows improved performance 

enhancements at the cost of a lower 

detection accuracy. We have not reported 

this accuracy as it will vary according to 

when situation changes occur against the 

  values. 
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