
 International Journal on Computer, Consumer and Control (IJ3C), Vol. 1, No.1 (2011)

Processing Multiple Image Streams for Real-Time Monitoring of Parking

Lots

Yu-Hsn Liu
1*, Kok-Leong Ong

2
, Vincent C.S. Lee

3
, Yi-Ping Phoebe Chen

1

ABSTRACT

We present a system to detect parked vehicles in a

typical parking complex using multiple streams of images

captured through IP connected devices. Compared to

traditional object detection techniques and machine learning

methods, our approach is significantly faster in detection

speed in the presence of multiple image streams. It is also

capable of comparable accuracy when put to test against

existing methods. And this is achieved without the need to

train the system that machine learning methods require. Our

approach uses a combination of psychological insights

obtained from human detection and an algorithm replicating

the outcomes of a SVM learner but without the noise that

compromises accuracy in the normal learning process.

Performance enhancements are made on the algorithm so

that it operates well in the context of multiple image streams.

The result is faster detection with comparable accuracy. Our

experiments on images captured from a local test site shows

very promising results for an implementation that is not only

effective and low cost but also opens doors to new parking

applications when combined with other technologies.

I. INTRODUCTION

The motivation behind the work in this paper is the

desire for a parking system that aims to reduce frustration

for drivers in their attempt to hunt for a free parking lot.

Especially under heavily utilised conditions, navigating a

parking site and competing with other drivers for a free spot

is often a time consuming and frustrating task. Current

advanced parking systems at various sites in Australia

implements a ―sensor-to-lot‖ approach with signages near

the site to assist drivers. Although such an implementation

provided assistance to drivers, there are many drawbacks.

By using a sensor for each parking lot, a large parking

site becomes costly to implement when the costs of fitting

sensors and wiring them to the signage is considered.

Consequently, the implementation is kept simple to contain

the costs. As a result, the implementation failed to take

advantage of the collective information provided by the

sensors. In situations where the site is heavily utilised,

drivers quickly face frustrations because (i) signage

information become inaccurate; (ii) sensor lights (that

indicated free lots) become difficult to spot; and (iii) the

effectiveness of light indicators are limited to a small range

due to the ―line of sight‖ approach. This a ―local optimal‖

solution since drivers in a busy parking site can only depend

on available information in the vicinity rather than the

collective information provided by the sensors.

In search for a better car park system than the

commonly used ―sensor-to-lot‖ approach, we discovered

that many research do not address the problem of informing

drivers about free parking lots, and using that information

effectively to reduce the frustration of drivers. A different

solution is thus called for that started this investigation. As

smart phones connected to the Internet via 3G networks

become ubiquitous, we foresee that they may present the

answer to ease, if not, end a driver's car park hunting

nightmare.

Our premise is that if drivers are informed in advanced

about the situation of a parking site, it will enable decisions

to be made to avoid the frustrations of not been able to

secure a free parking lot. Extending this idea, it would

become possible to use the technology in ways such as

enabling guidance to parking lots on a large parking site,

directing drivers to alternate parking sites under busy

situations, and so on.

For such a system, the sensor in each parking lot needs

to be wired to a server so that they can be mashed up with

information on the Web to create the applications we

envisioned. Doing so however will significantly increase

infrastructure costs. The solution is to replace multiple

sensors with a single IP-enabled camera. By reducing the

number of input points, we lower costs but now require a

method to detect the presence of a parked car. Our proposal

is novel in terms of marrying image processing technologies

and machine learning concepts to deliver a cost effective

and accurate solution. Such a solution will have a good

degree of accuracy and in the presence of multiple image

streams, requires fast processing capacity on a cost-effective

computer.

We begin with a discussion of related works in Section

II before moving on to the discussion of our solution in

Section III along with experimental results in Section IV.

From this base algorithm, we improve performance of the

algorithm in the context of processing multiple image

streams on a single compute device. The performance

enhancements were described in Section V. Lastly,

conclusions of our work is found in Section VI.

23

Paper submitted 08/15/11; revised 11/15/11; accepted 12/30/11.
* Corresponding Author: Yu-Hsn Liu (E-mail:

yliu65@students.latrobe.edu.au)
1 Department of Computer Science and Computer Engineering
LaTrobe University, Bundoora, Victoria 3086
2School of Information Technology Deakin University, Burwood, Victoria,

Australia
3Faculty of Information Technology, Monash University Victoria, Australia

 Y.-H. Liu et al.:Processing Multiple Image Streams for Real-Time Monitoring of Parking Lots

(a) (b)

Fig. 1. (a) A reference image where the parking lot is

empty. The same set of filter is applied to the

reference image as well as the incoming image

stream represented by (b). For images streams

where the vehicle colour is light (as in (b)), it is

rather easy to obtain a high detection accuracy.

II. RELATED WORKS

Our work comprises of two areas: (i) the design of

smart car parks and (ii) the detection of free parking lots in

images. On the design of car park systems, which is not the

main discussion point of this paper but relevant, our survey

revealed a focus on a number of key areas. Many address

problems in aspects of parking such as smart payment

systems [1]-[3] transit-based information [4], [5], automated

parking [1], [6]. In these areas, the problems and objectives

addressed are different from our motivation.

Two areas of car park design research are however of

interest to us. The first is e-Parking systems such as those in

[7], [8]. Most e-Parking systems are Web-based where

drivers look for available parking spots around points of

interest. A driver can also book a parking space in advanced

using either SMS or via the Web. In a way, our proposal to

use modern smart phone is the evolution from the works

reported in this area. While this paper attempts to report the

detection mechanism, its design is motivated by the desire to

eventually create such a system where smart phone can be

used to book car park spaces, get car park information as

well as other applications that use the collective information

generated from the cameras. Another difference from

e-Parking systems in our case is the shift from the focus of

Web-based systems to the focus on applications that run on

the smart phone utilising the information made available on

a Web server.

The other area of car park design research is Parking

Guidance and Information Systems (PGIS) represented by

the works of [9]-[12]. The key premise of PGIS is the ability

to provide guidance to drivers in finding a park. While

similar in motivation, our work differs from such systems in

terms of the proposed implementation. Generally, PGIS is

deployed using signages around the car park facility and in

limited cases, encompassing the entire city area. These

signages emit collated information from vehicle detection

sensors to provide drivers information about free parking

lots. In that sense, parking information is not personalised

and is only available when the driver is near the physical

facility. With smartphones and 3G networks, we envision a

system that will publish car park information down to its

available lot details providing individual smartphones the

capability to filter information to the needs of the individual

driver. Additionally, such a model opens up various

possibilities for developers to create novel applications

arising out of the published information. Yet to achieve all

the above, a detection system that can work with such new

technologies are required. Hence, the motivation of the

work reported in this paper.

On the issue of detection, one approach is the use of

machine learning techniques, where labeled images are used

to train a classifier that will be deployed to detect the

presence of a car. Here, different classifier technologies,

methods of training and the structure of classifiers were

explored. For example, [13] proposed a 8-class Support

Vector Machines (SVM) classifier with probabilistic

outputs while in [14], a simple (linear hyperplane) classifier

was used to achieve above 90% accuracy by optimising the

information of individual features in an image. Others used

image processing techniques to achieve similar results.

Interpretation of image sequences using visual surveillance

techniques was proposed by [15] while [16] and [17] tracks

movement of vehicles as the basis for determining free

parking lots.

For [14], the major drawback is in the scalability of its

solution. For an 8-class SVM classifier, the system is only

capable of dealing with 3 parking lots in a single image. If a

single camera captures 4 parking lots, a 16-class SVM

classifier is needed. As the effort and computation

requirements double with every additional parking lot, the

solution's practical significance is limited. In the area of

image processing techniques such as [15]-[17], the detection

mechanism requires incurs either high computational costs

or

large memory space. In comparison, our approach is far

more scalable than the proposal in [14] and requires less

computing resources than those proposed in [15]-[17].

(a) (b)

Fig. 2. The only difference in the two images is the position

of the sun. As a result, the intensity level affected the

filters' output as seen in (a) and (b) where edge

detection and binarisation filters are applied using

default parameter values. Clearly this impacted

detection accuracy, especially in the case of the first

parking lot. In our algorithm, we used a simple

statistical method to adjust the filter's parameters

on-the-fly so that it can be compared to the

reference image accurately.

III. OUR APPROACH

In the context of image processing, which this system

now depends on, the problem is a classic case of object

detection [18], [19]. The challenges of object detection are

25

24

 International Journal on Computer, Consumer and Control (IJ3C), Vol. 1, No.1 (2011)

the high variability in appearances of objects in a given class

(in our case, parked cars) and the added variability

between instances of the same object due to alternate

viewing angles and/or conditions (e.g., the same car viewed

from the front, side, or back). As images are taken as

specific time intervals from different cameras, we now have

multiple image streams to be processed. The problem thus

calls for real-time efficiency and accuracy.

To achieve this, we first address the question of accurate

detection. As we learnt in Section II, a popular approach is

to use a classifier to distinguish between an image belonging

to a target class (i.e., car present in lot) and one that doesn't

(i.e., car not present in lot). Usually a set of vectors, with

each representing an image, is used in the training of

classifiers to find discriminating features that separates two

or more classes. In the case of the SVM [20], well-known

for its binary classification accuracy under small data

samples and high dimensionality, the set of discriminating

features are identified by the hyperplane.

Simply put, the concept of a hyperplane is a cut that best

separates the feature spaces into two distinct classes. In

SVM, this cut is determined via the learning process using a

series of vectors and its associated class label. The issue with

this process is the dependency on the learning algorithm,

which itself is dependent on the data, to find the best cut that

defines the hyperplane. To increase accuracy, much of the

work focuses on the training data either by stripping the

vector down to key feature spaces and/or increasing learning

instances. In any case, the idea is to reduce the noise in the

training instances to allow a ―cleaner cut‖ and hence, a better

classification accuracy. We were however inspired by a

different approach.

1. Recreating the Ideal “Hyperplan”

We asked if we can define the hyperplane directly. If we

can do so, we will be able to eliminate the noise from the

training instances giving rise to a significant increase in

accuracy. In pursuit of our ideal hyperplane, we begin by

learning how the most accurate classification machine, i.e.,

the human subject, determines the presence of a free parking

lot. Since we are no psychologist, we turned to existing

literature for some guidance. Fortunately for us, Zhao and

Nevatia [21] reported such an experiment with some useful

findings. In the test they conducted, the factors most people

mentioned about knowing the presence of a car are (i) their

rather rectangular shapes; (ii) the visibility of front and rear

windshields; (iii) evidence of a parking lot; and (iv)

environmental conditions such as shadows or light.'

During classification, these factors are the

discriminating feature spaces to be used for detecting the

presence of a car in an image. And in the specific case of the

SVM, they will be the hyperplane we are seeking when

feeding the learning instances to the SVM learner. While

conceptually this is easy to explain, trying to implement this

within the SVM isn't as straightforward. After all, the

algorithm was designed to learn about the cut rather than to

be told of the cut. While it is possible to process images of

the noise to get close to the ideal hyperplane, it is not

possible to automate this under multiple streams of images.

This led us to consider an alternative.

In our opinion, these factors are clearly the key feature

spaces to use in determining the presence of a car when

given an image. In other words, the human subject would

filtered other information focusing on the key features to

arrive at the conclusion. In lingo of SVM, this would be the

hyperplane we seek when feeding the learning instances to

the SVM learner.

(a) (b)

Fig. 3. Final image used to detect presence or absence of

car: (a) before applying the binarisation filter; (b)

after applying the binarisation filter, which

improves accuracy. Clearly, the reason for the

improved accuracy is the wider margin between

the two intensities after the binarisation filter.

While conceptually this is easy to explain, trying to

implement this within the SVM isn't as straightforward.

After all, the SVM was designed to learn about the

discriminating features rather than been told what they are.

The immediate and apparent solution is to produce

learning instances containing only these feature spaces.

Instead of going with this option, we toyed with an

alternative approach: why not explicitly code the classifier

instead of feeding our psychological observations into the

SVM learner? Clearly, the benefit of doing so is

performance, i.e., a custom classifier exploiting the

psychological observations will result in real-time

processing capabilities that the application needs. The idea

of an accurate and fast classifier is very attractive to us.

Hence, our decision to implement these findings using

image processing techniques.

We first convert the colour images into 8-bit grey scale

images allowing each pixel to be represented exactly in a

byte for the ease of implementation. For now, we restrict

ourselves to the analysis of a single parking lot taken in an

image. Our solution will easily and directly scale to multiple

parking lots. With the first factor been the shape, our

intuition is to begin by applying an edge filter on the image.

As shown in Figure 1(b) and Figure 2(a), the edge filter

strips the noise in an image by dropping texture and tonal

details but leaving behind structural properties to allow an

object to be determined.

The next factor is crucial to the speed and accuracy of

our proposal. The experiments at our test site revealed that

the key determinant of an unavailable park lie in the

visibility of the windshields. The windshields are glass

surfaces that reflect light giving off a higher intensity within

the parking lot relative to its environment. Even in dim

multi-story parks, this remained the case even after the

image was stripped off its details by the edge detection filter.

26

25

25

 Y.-H. Liu et al.:Processing Multiple Image Streams for Real-Time Monitoring of Parking Lots

Our algorithm uses this key observation, which will be

discussed in Section III-B.

The third human consideration is to look for evidence of a

parking lot. In our case, this factor is built into the algorithm

as we deal with a per parking lot basis during detection. For

an image taken, we will predefine the boundary coordinates

for each parking space in the image. In fact, the boundary

coordinates defined an area smaller than the parking lot. In

our experiments, we find that this gave rise to better

efficiency and accuracy when the area is concentrate around

the spot(s) where the windshields, i.e., factor (ii), are likely to

appear.

The last human observation is by far the most

challenging. Car colour and size, and varying lighting (or

weather) conditions can cause false positives (or negatives)

in the detection outcomes. For a dark car, there may be

insufficient light from the windshield to conclude the

presence of a car (i.e., false negatives). Likewise, a small car

will give bigger variation in terms of where they can park

within a lot space. And with windshields a key determinant

in our algorithm, over variation in the position of the

windshield will increase false negatives. Interestingly,

dealing with lighting conditions was much easier than

dealing with car colour and size. The issue with lighting

conditions is mainly constrained to open parking spaces

with natural lighting. As weather conditions (e.g., position of

the sun) vary, the detection accuracy also fluctuates.

On weather conditions, we found rain to be an issue

when our test camera was not properly sheltered. This

caused significant problems when we applied the edge filter

leading to false positives. This was easily overcame by

mounting a shelter on the camera. Unlike fixed light sources

in sheltered parking lots, the movement of sunlight throws

varying light intensity (i.e., shadows) on the same parking

lot resulting in both false positives and negatives. As

Figure~2 showed, the movement of sunlight caused

presence of noise when passing images through the edge

detection filter. Our approach is to use multiple reference

images to compensate the varying levels of light due to the

sun's movement. Instead of a single reference image (such

as Figure 1(a) taken at time), we used an array of reference

images taken throughout the day to allow variation in the

threshold thereby minimising the errors. With this intuition,

we discuss the algorithm in the next section.

2. Algorithm

Let * + be the set of cameras in a

car park facility. For any camera , we define a tuple

〈 * +〉 such that is a

parking lot monitored by . We also define a tuple

〈 〉 such that { } is a set of

reference images taken by when the lots in are

unoccupied and

 is a reference image taken at some time period.

For any the rectangular detection zone

 () 〈() ()〉 marks the area where the

light intensity is measured in and also the image stream

 captured by , which we define as a tuple 〈
 *

 +〉.

In defining (), the coordinates are usually within

the boundary defined by the parking lines and located

approximately where the windshields are likely to appear

for a given camera angle. As seen in Figure 3, after edge

detection and binarisation, the edges of the windshields

become a means to identify a change in the intensity reading

in the `middle' of the parking lot thus, suggesting the

presence of a car. While it is possible to work on Figure 3(a),

we find better accuracy after the binarisation filter as the

margin of error is significantly increased as shown in

Figure 3(b).

The detection is made by comparing the intensity

reading between and for a given
〈 〉 such that the intensity difference in the area

defined by () on 〈 〉 and

 〈 〉 is above In determining , the light

intensity threshold that suggests the presence of a car, some

calibration will be expected. This calibration is made with

respect to the site condition and we believe is acceptable for

a system of this nature. At our test site, we set this at a value

of 15%. In other words, if the light intensity measured from

the reference image on the area determined by ()

is 1, then the light intensity measured from on the same

area must be > 1.15 to conclude the presence of a car. The

calculation to achieve this is given in Algorithm 1.

Since our images are grey scales, each pixel carries a

value in the range of 0 … 255, where 255 is a white that

indicates the highest light intensity on the pixel. For any

given (), we are interested in the average intensity of

light defined by () on and

respectively. We then compute the ratio to determine if the

intensity in is higher than . Equation 1

summarises this calculation.

 ()

 ()
∑

()

 ()
 {

 (1)

As mentioned and is the case with any threshold, this

needs to be adjusted to suit individual cases. Once camera

positions are fixed, reference images may be taken and the

image streams can be used to empirically work out the best

value of for a given camera. Once set, any variation in

the environment is compensated using a different

instead. Thus is critical in cancelling out any noise that

may impede accurate detection. We note that this calibration

process is far more efficient than some machine learning

approach, where training and verification can take longer.

We also apply an additional binarisation filter to

eliminate pixel noise to achieve a cleaner wire frame of a car.

We find that doing this will improve accuracy further when

pixel values are cleaned up to either a value of 0 or 255. The

challenge of using this filter is the need to provide a

threshold , where a pixel value > will result in a white

(and black otherwise). It is tempting to simply go for the

mid-value of the intensity range, i.e., setting = 127.

However, doing so will not allow for varying light intensity

in different photos and can, as our experiments show, result

in a poorer detection accuracy. To determine the right , we

first find the average intensity in the image. Next, we adjust

34

26

26

 International Journal on Computer, Consumer and Control (IJ3C), Vol. 1, No.1 (2011)

this mean value by adding 1-standard deviation to the

threshold to derive , which is the basis for the binarisation

filter. We find that by adding 1-standard deviation to the

mean intensity of the image, the results are more accurate as

image noise are removed.

Algorithm 1 DetecCars (*〈 〉 +)

 for all do

 ()

 ()

 * +

 ()

 ()

 if () then

 print Occupied for

 else

 print free for

 end if

 end for

IV. EXPERIMENTAL RESULTS

In determining the effectiveness of our approach, we

will benchmark our technique against that reported in [13].

Their proposal uses the SVM, where multiple classifiers

were built to determine the availability of 3 parking lots.

Whenever possible, we replicate the empirical conditions

used in [13] so as to give an accurate comparison.

In our setup, the same number of samples, i.e., 300,

were taken on 3 parking lots as shown in Figure 1. Like our

benchmark, the samples were taken over a day from the

same position accounting for lighting conditions, changes in

the colour intensity, and movement of vehicles in and out of

the parking lots. We also experienced rain conditions that

wasn't in the plan but nevertheless provided additional

consideration in the design of such a parking system. Unlike

the benchmark however, we do not require prior training.

Instead, we define () , () , and () ,

indicating where the windshields are likely to be. We also

spent another day taking images for at 4 interval periods:

early morning, late morning, early afternoon and late

afternoon. We then recreate the 8-class SVM reported in the

benchmark by replicating the training process. In doing so,

the immediate difference is the amount of overheads

required in the preparation of the benchmark method. For 3

parking lots, 2400 patches (300 for each class) of the image

is needed. Acquiring these patches proved a very time

consuming process that is unattractive when scaling up to

large parking sites. Compared to our approach, there is no

need to involve the mammoth task of training, which of

course is an immediate benefit.

In [13], a range of classification accuracies were

reported using different number of training samples. In this

paper, we work directly with the highest number of samples

so as to yield the most accurate version of their classifier.

We then compare this accuracy level against our work using

the same test images.

 Approach by

[13]

using 2400

samples

Proposed

Technique

(w/o

training

samples)

against SVM

(3 spaces)

85% 93%

against SVM

(3 spaces)

93.52% 93%

against SVM

(1 spaces)

83% 97%

Fig. 4. A comparison of detection accuracy using highest

level of training samples and the Markov

Random Field (MRF) reported

in~\cite{WHW+07} against the proposed

technique, where such machine learning training

is non-existent. Instead, encoding the human

heuristics into simple image processing actions

and time-related calibration provided

comparable accuracy and significant reduction

in training time.

On our tests (Figure 4), our approach achieved 93% in

classification accuracy for 3 parking spaces and a very high

97% on a single parking space. This is on par with the

reported 93.52% accuracy in [13], when a high level of

training samples is used with the Markov Random Field

(MRF) correction (for 3 spaces). When training samples are

dropped, our technique becomes immediately attractive

when the high cost of training is eliminated. In our case, the

inaccuracies were a result of small cars giving rise to a

bigger variation of the windshield positions within the

parking lot. In such a situation, the light intensity gathered by

our algorithm was too low to trigger detection, i.e., false

negatives.

In [13], the average conflict rate was also measured.

This measure reflects the error as a result of camera angles

capturing the presence of other cars beside the lot of interest,

e.g., Figure 3(b) when camera angle is positioned on the left

of the image. Again on this measure, the benchmark

performed better only when there are sufficiently high

training samples. In many cases, we can improve on this

measure by reconsidering the camera positions. In positions

where the overlap is minimal, we can improve on this

measure without changing any part of the algorithm. We do

recognise that this suggestion may increase the cost of the

35

27

27

 Y.-H. Liu et al.:Processing Multiple Image Streams for Real-Time Monitoring of Parking Lots

system but it will really depend on the decision maker to

decide the balance to strike with accuracy on this matter and

the costs.

The final measure is on the level of false positives. The

challenge of false positives arises out of changing light

conditions. Primarily due to the movement of sunlight in

open spaces and the colour of the car in sheltered parking

sites, our approach has a rate of 3.86% on average. While

this is higher than the proposed SVM and MRF correction

method in [13] (1.25%), it performs better than the

benchmark without the MRF correction (4.39%). We

intend to improve on this measure as part of our future work.

Instead of just increasing the number of reference images in

 , we will consider similar correction

techniques like the MRF used in the benchmark. On the

performance of the false negatives though, our performance

does not seem to differ greatly from the techniques

evaluated (as reported in Figure 5).

V. PERFORMANCE ENHANCEMENTS

So far, the discussion dealt with a single image stream

 from a single camera . Typically, a large parking

facility will require multiple cameras (i.e.,) to capture all

available lots 〈 〉, which means that multiple image

streams ()are generated. To process every frame

(or image) on the server will incur expensive computational

costs that are undesirable when (i) the number of image

streams are high and (ii) the rate at which each camera

captures images are also high. As such, to avoid a spike in

computational load, we need to further investigate how

multiple image streams can be computed efficiently. As

noted in Section IV, as we reduce the amount of pixels, we

sacrifice on accuracy suggesting that we maintain each

image at a reasonable size. Likewise if the capture rate is

low, then the timeliness of updating the facility information

will be delayed. Since it is undesirable to compromise on

either the image size or capture rate, we need an alternative

way to ensure performance do not take a hit in the presence

of multiple image streams.

A crucial observation is that the high capture rate of

each camera also meant that we experience a high rate of

―similar situation‖. That is, between two consecutive frames

(or images) from the same camera, the probability that a

parking lot is ‗free‘ or ‗occupied‘ remain very high. In other

words, there is no need to compute () (in

Algorithm 1) on every image in the streams since after

each expensive compute, the outcome has a high probability

of being the same as the previous frame. This led us to ask if

we can devise another algorithm that is highly compute

efficient at detecting a change between two consecutive

images? If we can develop such an algorithm, then we only

need to compute () when we think there is a change in

the situation. As such, the algorithm need not be absolutely

accurate (i.e., we can accept a degree of error) as long as it is

highly efficient at telling us if we need to apply Algorithm 1.

This led to the question of whether we can develop an

efficient change detection algorithm.

Conventional change detection algorithms use different

methods to detect changes between two consecutive images.

The most basic method is to take an image stream as the

input and for each image , a binary image called a

―change mask [22]-[24] is generated by computing each

pixel of
 and of

 using () ,

where () if has changed significantly

from
 . Otherwise, () . Computing the

change mask is straightforward but pose two crucial issues.

First, the method to compute a change mask has a compute

complexity that i proportional to the size of the image

resulting in an equivalent complexity as () . Second,

detecting a change is not easily from the change mask as it

has been found to be highly application specific [25]-[27].

Of course there are other techniques proposed to improve

change detection between two images and the problem has

a long history with many other computer problems such as

image registration, object segmentation and tracking, etc., all

of which bear a substantial literature of their own.

 False Accept Rate False Reject Rate

against SVM

(3 spaces)

4.39% 8.73%

against SVM (3

spaces) + MRF

1.25% 3.56%

against SVM

(1 spaces)

4.85% 8.12%

against

proposed

technique

3.86% 5.34%

Fig. 5. A comparison of false positives (or false accept),

i.e., wrongly detected the presence of a car in a

parking lot and false negatives (or false reject), i.e.,

wrongly detected the absence of a car in a

parking lot, using the techniques in [13] against

the proposed technique.

The biggest challenge in change detection lie in the lack of

an agreed uniform definition of what constitutes to a

―significant change‖ between two images. Can ―significant

change‖ be determined by geometric changes [28], [29],

such as a difference in the pixel intensity [29], [30]? Or do

we require more sophisticated techniques that use

hypothesis tests that often require complex compute on the

images, such as comparing the histogram of two images and

computing the statistical likelihood of a change [31], [32]?

Regardless of the accuracy or compute efficiency of these

mechanisms, we note that our problem do not require the

presence of such complex algorithms. Again this argument

is driven by our need for more compute efficient methods

than (). Since we can afford false positives, i.e., wrongly

detecting that a change in situation has happened, we can

28

28

 International Journal on Computer, Consumer and Control (IJ3C), Vol. 1, No.1 (2011)

opt for a very simplistic approach. This method, when

combined with the right probability distributive function,

actually result in a significant reduction of compute costs.

1. Algorithm

The key idea behind Algorithm 1 is the encoding of

human observation as a way to classify the presence or

absence of a car within a park. This approach has the

advantage of not requiring training but instead uses

reference images and calibration to determine if the light

intensity suggests the presence of a car in a parking lot. In

order to achieve the accuracy required in Algorithm 1's

 (), (i) three image filters were used and (ii) the intensity

of all pixels within the specific area of the parking lot was

determined.

One way to be faster than Algorithm 1 is to reduce the

number of filters used and the number of pixels computed in

 (). With the image filters, hardware acceleration can be

used by acquiring cameras that take grey scale images for

example. We therefore focus on the number of pixels to

process. Our observation is that if a situation change is

detected in image , then the likelihood of a new

situation arising in is very low. In other words, the

probability of a situation change () following a detected

situation change in will only increase with subsequent

shots, i.e., () () …. This

general observation allows us to apply an exponential

distribution () to the number of pixels assessed. Recall

in computing () an area () marked within the

parking lot is considered. Since () (in

most cases), we only need to sample a small number of

pixels in () that () checks, i.e,. () () ,
where is the number of pixels defined in the detection

zone. Overtime and guided by the statistical distribution, we

progressively increase the amount of pixels checked in

 () resulting in a net reduction of pixels computed

between two situational changes. As with the use of

reference images to compensate for differences in the

environment, () needs to be calibrated according to the

traffic flow of the parking facility. Such calibration can be

achieve by adjusting two parameters () in where

their relationship is given as

 ()

 (2)

In our case, is the location parameter in that

determines, when the exponential distribution applies to

 (). If it should start after the 10th image (i.e., at

following a situation change in), then . The

scale parameter equates to the average time a car

remains in a parking lot. So if a car remains in the parking

lot on average of 3 hours, then or = 180 (minutes)

depending on the granularity of the exponential scale used.

In terms of implementation, a crucial step is in the

choice of the pixels to select from () for such quick

assessment. Clearly if only a small number of pixels are

selected, then those pixels should not be constrained to a

specific area within (). Otherwise, the degree of error

can be high. To minimise the occurrence of such errors, the

selected pixels should continue to test the maximum area

possible in (). We achieve this by aligning the number

of pixels from () () on an imaginary line across

 (). The pixels are equally spaced out on this imaginary

line as points to test intensity readings. The readings taken

are then compared to the pixel readings in the reference

image. When the difference exceeds we trigger a full

compute using () Figure 6 elaborates this

process in detail while Algorithm 2 incorporates this process

in () as shown.

The pixels that lie on this imaginary line become points

in () where readings are sampled. No doubt such

readings will not achieve a high accuracy but since we

already have prior knowledge of the existence of a car (or its

absence), we only use the result to decide if there may be a

change in situation. As such, the results will only lead to

false positives that trigger the compute of () on all

pixels in () to verify if a situation change has occurred.

These

(x1, y1)

(x2, y2)

Z(p)

Number of pixels determined
by f() and Z(p) spaced equally

on imaginary line.

(x1, y1)

(x2, y2)

Z(p)

Imaginary line where pixels are
placed. As more pixels are used on

images further away from ri, aligning
the pixels on these lines maximises

coverage of Z(p).

Fig. 6. A visual explanation of how () is

computed. As described in Section V-A, we first

determine the number of pixels to select by computing

 () () , where is the -th image since

Algorithm 1 detected a situation change. So if

 () () = 9, then we will select 9 pixels along the

imaginary line that stretched across () as shown.

These 9 pixels are where the intensity readings are

taken on and the reference image . The

magnitude of the average intensity is then taken and

compared against and it the threshold crosses, we

invoke the more computational intense but accurate

 (). Note again that with less pixels used, it

means that the -th frame is more recent to the frame

that had a situation change that we modelled as ().

false positives will not affect the accuracy of the system

except to waste some compute time. Nevertheless, the

overall result of such fast compute reduces the number of

triggers on a full compute with () and therefore, we

continue to improve overall performance. Algorithm 2

shows the changes made to Algorithm 1, where

 () and capture the essence of our discussion

in this section and we present performance results of this

system next.

Algorithm 2 DetecCars (*〈 〉 +)

 for all do

 ()

 ()

29

29

 Y.-H. Liu et al.:Processing Multiple Image Streams for Real-Time Monitoring of Parking Lots

 * +

 ()

 ()

 // sample some pixels as determined by

 // distribution () and ()

 if () then

 // initiate full compute as difference

 // is above threshold,

 if () then

 print Occupied for

 else

 print free for

 end if

 end if

 end for

2. Experimental Results

Our earlier empirical evaluation in Section IV focused

on the accuracy of the proposed solution. While the solution

achieved good accuracy, Algorithm 1 alone failed to

provide decent real-time operation on a single computer.

This led to the performance enhancements that result in

Algorithm 2. In this section, we report our performance

evaluations of these algorithms.

Our implementation uses C# and the .NET‘s built-in

graphics library for bitmap manipulation. The image filters

were drawn from an Open Source library called

AForge.NET (http://www.aforgenet.com) to allow us to

quickly implement the algorithm to test the viability of our

proposal. Our first test is to validate the performance of

Algorithm 1. Figure 7(a) shows the number of pixels for

each image profile and its corresponding average runtime of

50 images. As the Y-axis is a log scale, we can see that as

the number of pixels double from one image profile to

another (e.g., 640x480 to 1024x768), we see the runtime

quadruples. As such, although high resolution images

provide better accuracy for Algorithm 1, we are constrained

by the runtime costs. Figure 7(b) shows the average

accuracy achieved over 50 images at different sizes. A

significant improvement in accuracy is seen when the image

size goes to 640x480. Recall that the size of () is a

region of the profile and not the entire image, it is clear that

this profile provided the minimum number of pixels

required in ()to get an accurate reading. Although the

image size of 1024x768 gave further accuracy, its runtime

performance isn‘t ideal. Interestingly, as the image scales

beyond 1027x768, accuracy drops suggesting the impact of

noise on higher resolution images. Our attempt to recalibrate

 did not result in any significant improvements. However

this should not be a concern given that the focus of such a

system is to be cost-efficient and therefore, we expect to

work with images of lower resolution to begin with. The

performance and the error considered, we conclude that the

image size at 640x480 yield a good result. Any image larger

than 640x480 yield noticeable ‗pauses‘ in intensity

computation while using images smaller than 640x480

lowers accuracy. Even with variation to our empirical

evaluation indicates that accuracy and size is optimally

balanced at 640x480.

The next performance evaluation takes into account of

120 images with 3 situation changes. We then measure the

runtime to complete processing all 120 images. We further

(a) (b)

Fig. 7. Runtime performance of computing different

image sizes using Algorithm 1: (a) average

runtime of 50 images over different sizes along

with the number of pixels in each image profile

- y-axis is log scale; (b) average detection

accuracy over 50 images at different sizes.

Comparing (a) and (b), we conclude 640x480 as

a good size on our hardware.

note the number of times () was invoked in

Algorithm 2 so as to determine the false positive percentage.

For this test, () was configure with and

 Setting to 0 means we start sampling ()

immediately following a situation change. Further we

expect a car to leave or occupy a parking lot every 10

minutes (i.e.,). The sequence of 120 images (i.e., a shot

taken every minute) hence correspond to 2 hours of image

shots taken on the same 3 parking lot space depicted in

Figure 1. We then vary over a number of repeats on the

same set of images recording the runtime performance in

Figure 8.

Figure 8(a) shows the runtime performance of

Algorithm 1 against Algorithm 2 (which uses the

performance enhancements outlined in Section V-A). Note

that applies only to Algorithm 2 since Algorithm

1 does not use any optimisation. By avoiding a full compute

in Algorithm 2, we see significant 36% improvement in

performance (from 5.03 seconds to 3.19 seconds). As we

increase , further performance improvements is seen in

Figure 8(b) but at the expense of lower accuracy. We have

not reported this accuracy since it depends entirely on when

situation changes take place against the setting of .

Nevertheless it is suffice to note that as increases, we will

compromise on accuracy. Further to conclude the

experiments, it is important to appreciate that the absolute

runtime improvements quickly add up when multiple image

streams are to be processed.

VI. CONCLUSION

Despite advances in parking systems, we continue to

face frustrations at heavily utilised parking sites. Current

systems fail because drivers have no prior access to

38

38

30

30

30

 International Journal on Computer, Consumer and Control (IJ3C), Vol. 1, No.1 (2011)

information until arrival. And upon arrival, much of the

search for a free park is ad-hoc based on information from

signages and light indicators within the driver's line of sight.

Our proposed system will ease driver frustrations through a

system that integrates Internet-enabled smart phones. In

Australia and many parts of the world, the ubiquitous

adoption of such devices has made it feasible for drivers to

access live parking information prior to arrival. When

combined with other technologies, this opened up

possibilities of a parking system that could inform drivers

before arrival at site, direct drivers to parking lots, and thus

regulating traffic in the surroundings. Our immediate future

work is therefore to build applications on smart phones to

demonstrate these ideas coming off a “camera-to-server”

approach. Critical to achieving this is the development of a

detection mechanism to fit the “camera-to-server” model,

which is cost effective and technically viable. As argued

earlier, existing systems and current experimental projects

do not consider aspects of this problem. The work reported

in this paper thus fills this gap.

The research contribution is a method to enable a

―camera-to-server‖ implementation by balancing the costs

against the features needed to deliver the parking system.

Unique characteristics of our approach include the applied

insights of human detection (as reported in the

psychological test conducted by Zhao and Nevatia [21]) in

our algorithm, and the explicit coding of a detection

behaviour based on the learning characteristics of a SVM

learner. By explicitly coding the classification behaviour of a

SVM learner, we eliminated the cost of training. At the

same time, we eliminated noise that would otherwise be

embedded in the hyperplane through the normal training

process. This gives us the improvement in detection

accuracy. The performance enhancements that follow

reinforce the practical utility of this method by reducing the

number of full compute through effective use of an

appropriate statistical distribution. The final result is a

detection mechanism that supports the ―camera-to-server‖

approach with high efficiency and accuracy in an

environment with multiple images streams.

ACKNOWLEDGEMENT

Sections of this invited paper appeared in an early

version published under the 3rd Int. Conf. Networked

Digital Technologies, Proc. Communications in Computer

and Information Science, Springer, 2011.

(a) (b)

Fig. 8. Runtime performance comparison between

Algorithm 1 and Algorithm 2: (a) runtime

of a single image stream containing 120

images with and 3 situation

changes; (b) the same image stream used in

(a) but with different settings. Note that

since Algorithm 1 does not use , its

runtime remains consistent while

Algorithm 2 shows improved performance

enhancements at the cost of a lower

detection accuracy. We have not reported

this accuracy as it will vary according to

when situation changes occur against the

 values.

REFERENCES

[1] J. Chinrungrueng, U. Sunantachaikul, and S.

Triamlumlerd, ―Smart Park- ing: An Application of

Optical Wireless Sensor Network,‖ Applications

and the Internet Workshops, IEEE/IPSJ

International Symposium on, vol. 0, p. 66, 2007.

[2] W. Jones, ―Parking 2.0: Meters Go High-Tech,‖

IEEE Spectrum, p. 20, 2006.

[3] K. C. Mouskos and N. A. P. Maria

Boile, ―Technical Solutions to Overcrowded

Park and Ride Facilities,‖ University Transport

Research Centre (Region 2),

http://tris.trb.org/view.aspx?id=814921, Technical

Report: FHWA-NJ-2007-011, 2007.

[4] B. Farhan and A. T. Murray, ―Siting park-and-ride

facilities using a multi-objective spatial

optimization model,‖ Computers and Operations

Research, vol. 35, no. 2, pp. 445–456, 2008.

[5] C. J. Rodier, S. A. Shaheen, and C. Kemmerer,

―Smart Parking Management Field Test: A Bay

Area Rapid Transit (BART) District Parking

Demonstration,‖ Institute of Transportation Studies,

Univer- sity of California, Davis,

http://pubs.its.ucdavis.edu/publication de-

tail.php?id=1237, Research Report:

UCD-ITS-RR-08-32, 2008.

[6] A. Mathijssen and A. Pretorius, ―Verified Design

of an Automated Parking Garage,‖ in Formal

Methods: Applications and Technology, ser.

Lecture Notes in Computer Science. Springer

Berlin/Heidelberg, 2007, vol. 4346, pp. 165–180.

[7] T. Hodel-Widmer and S. Cong, ―PSOS: Parking

Space Optimization Ser- vice,‖ in 4th Swiss

Transport Research Conference, Monte

Verit/Ascona, March 2004, pp. 1–22.

[8] K. Inaba, M. Shibui, T. Naganawa, M. Ogiwara,

and N. Yoshikai, ―Intelligent Parking Reservation

Service on the Internet,‖ in Symposium on

Applications and the Internet-Workshops, San

Diego, CA, USA., 2001, pp. 159–164.

[9] Q. Liu, H. Lu, B. Zou, and Q. Li, ―Design and

Development of Parking Guidance Information

System based on Web and GIS

Technology,‖ in 6th International Conference on

ITS Telecommunications, Chengdu, China, 2006,

39

31

31

31

http://tris.trb.org/view.aspx
http://pubs.its.ucdavis.edu/publication

 Y.-H. Liu et al.:Processing Multiple Image Streams for Real-Time Monitoring of Parking Lots

pp. 1263–1266.

[10] Y. Li, R. Ma, and L. Wang, ―Intelligent Parking

Negotiation Based on Agent Technology,‖ in

Information Engineering, WASE International

Conference on, vol. 2, jul 2009, pp. 265–268.

[11] Y. Mo and Y. Su, ―Design of Parking

Guidance and Information System in

Shenzhen City,‖ in Computing, Communication,

Control, and Management, ISECS International

Colloquium on, vol. 4, aug. 2009, pp.37–40.

[12] H. Zhong, J. Xu, Y. Tu, Y. Hu, and J. Sun, ―The

Research of Parking Guidance and Information

System based on Dedicated Short Range

Communication,‖ in Intelligent Transportation

Systems, Proceedings. IEEE, vol. 2, oct. 2003, pp.

1183–1186.

[13] Q. Wu, C. Huang, S. Wang, W. Chiu, and T. Chen,

―Robust Parking Space Detection Considering

Inter-Space Correlation,‖ in Multimedia and Expo,

IEEE International Conference on, jul 2007, pp.

659–662.

[14] M. Vidal-Naquet and S. Ullman, ―Object

Recognition with Informative Features and Linear

Classification,‖ in Computer Vision, IEEE Interna-

tional Conference on, Nice, France, 2003, pp. 281–

288.

[15] G. L. Foresti, C. Micheloni, and L. Snidaro, ―Event

Classification for Automatic Visual-based

Surveillance of Parking Lots,‖ Pattern Recog-

nition, International Conference on, vol. 3, pp.

314–317, 2004.

[16] C. H. Lee, M. G. Wen, C. C. Han, and D. C. Kou,

―An Automatic Monitoring Approach for

Unsupervised Parking Lots in Outdoors,‖ in

Security Technology, International Carnahan

Conference on, oct. 2005, pp. 271–274.

[17] I. Masaki, ―Machine-Vision Systems for Intelligent

Transportation Sys- tems,‖ Intelligent Systems and

their Applications, IEEE, vol. 13, no. 6, pp. 24–31,

nov. 1998.

[18] A. Mohan, C. Papageorgiou, and T. Poggio,

―Example-Based Object Detection in Images by

Components,‖ IEEE Trans. Pattern Analysis and

Machine Intelligence, vol. 23, no. 4, pp. 349–361,

2001.

[19] H. Schneiderman and T. Kanade, ―A Statistical

Method for 3D Object Detection Applied to Faces

and Cars,‖ in Computer Vision and Pattern

Recognition, International Conference on, Hilton

Head, SC, USA, 2000, pp. 1746–1759.

[20] E. Osuna, R. Freund, and F. Girosi, ―Support

Vector Machines: Training and Applications,‖

Massachusetts Institute of Technology, Cambridge,

MA, USA, Tech. Rep., 1997.

[21] T. Zhao and R. Nevatia, ―Car

Detection in Low Resolution Aerial

Images,‖ Image and Vision Computing, pp. 710–

717, 2001.

[22] P. Rosin, ―Thresholding for change detection,‖ in

Computer Vision, 1998. Sixth International

Conference on, jan 1998, pp. 274 –279.

[23] ——, ―Thresholding for change detection,‖

Computer Vision and Image Understanding, vol.

86, no. 2, pp. 79 – 95, 2002. [Online].

Available:http://www.sciencedirect.com/science/art

icle/pii/S1077314202909604

[24] P. Smits and A. Annoni, ―Toward

specification-driven change detection,‖ Geoscience

and Remote Sensing, IEEE Transactions on, vol.

38, no. 3, pp. 1484 –1488, may 2000.

[25] L. Di Stefano, S. Mattoccia, and M. Mola, ―A

change-detection algo- rithm based on structure

and colour,‖ in Proceedings. IEEE Conference on

Advanced Video and Signal Based Surveillance,

2003., july 2003, pp. 252 – 259.

[26] M. J. Black, D. J. Fleet, and Y. Yacoob, ―Robustly

estimating changes in image appearance,‖

Computer Vision and Image Understanding, vol.

78, pp. 8–31, 2000.

[27] Y.G. Leclerc, Q.-T. Luong, and P.

Fua,―Self-consistency and mdl: A paradigm for

evaluating point-correspondence algorithms, and

its application to detecting changes in surface

elevation,‖ International Journal of Computer

Vision, vol. 51, pp.

63-83,2003,10.1023/A:1020940807324.[Online].

Available:http://dx.doi.org/10.1023/A:1020940807

324

[28] A. Can, C. Stewart, B. Roysam, and H.

Tanenbaum, ―A feature-based, robust,

hierarchical algorithm for registering pairs of

images of the curved human retina,‖ Pattern

Analysis and Machine Intelligence, IEEE

Transactions on, vol. 24, no. 3, pp. 347 –364, mar

2002.

[29] C. Stewart, C.-L. Tsai, and B. Roysam, ―The

dual-bootstrap iterative closest point algorithm with

application to retinal image registration,‖ Medical

Imaging, IEEE Transactions on, vol. 22, no. 11,

pp. 1379 –1394, nov. 2003.

[30] D.G. Lowe, ―Distinctive image features from

scale-invariant keypoints,‖ Int. J. Comput. Vision,

vol. 60, pp. 91–110, November

2004.[Online].Available:http://dl.acm.org/citation.c

fm?id=993451.996342

[31] S.-S. Ho and H. Wechsler, ―Detecting

changes in unlabeled data streams using

martingale,‖ in Proceedings of the 20th

international joint conference on Artifical

intelligence, ser. IJCAI‘07. San Francisco, CA,

USA: Morgan Kaufmann Publishers Inc., 2007,

pp.1912–

1917.[Online].Available:http://dl.acm.org/citation.c

fm?id=1625275.1625584

[32] N. Mozafari, S. Hashemi, and A. Hamzeh, ―A

precise statistical approach for concept change

detection in unlabeled data streams.‖ Computers &

Mathematics with Applications, pp. 1655–1669,

2011.

32

33

32

http://www.sciencedirect.com/science/article/pii/S1077314202909604
http://www.sciencedirect.com/science/article/pii/S1077314202909604
http://dl.acm.org/citation.cfm
http://dl.acm.org/citation.cfm

