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Abstract—Finite fields mathematics are used in a variety of plays a key role in the implementation of public key cryp-
applications, including in coding theory, cryptography algorithms  tosystems. The core arithmetic operation in a field is the
 tournament scheduling, and the design of experiments. One of i tipjication operation. In ECC, the multiplier dominates the
the important issue in finite fields mathematics is finite field . . b .
multiplier design. A novel finite field multiplier algorithm for area 'r.] hardware and th_e computatlon'tlme In sqftware [4]-
Massey-Omura Multiplier based on a low complexity strategy [6]- This is one of the main reasons behind extensive research
is proposed. Based on search irreducible polynomials, we useon finite field multipliers. Although all finite fields of the
;_hiz_methoo(lj tflr)a_tt ref_sulétlS i?AOWGF COImPl;xi?yf_ifqpl?_fqgntaﬁlgnl_fOF same cardinality are isomorphic, each finite field is of distinct
inding good finite fields. The complexity of finite field multiplier T ; o
is depended on the choose of bases of finite fields. The Massey-complexIty I.n space and tl_me: The pompIeXIty is greatly based
Omura multiplier, developed on the normal bases, aims to locate on the choice of bases in f'n'te field. The most commonly
the good bases as the multiplier matrix and is divided into series Chosen bases are polynomial bases, normal bases and dual
and parallel design methods. The design for series and parallel bases [7]. The finite field multipliers based on normal bases
multiplier scheme is based on the space complexity, referred to have some advantages: (1)the squaring operation in normal
as series Massey-Omura multiplier and parallel Massey-Omura bases is simply through a cyclic shift of the coordinates of

multiplier. Finally, the experimental results demonstrate two | ts in finite field d (2) th fi f i
methods as follows: first, design the construction of type 1 and €l€ments in finite field and (2) the operation of computing

type 2 multiplier scheme and second, report the complexity large exponentiations and multiplicative inverses [8]-[10]. The
performance of the two multipliers. original normal basis multiplication algorithm was invented by
Index Terms—Finite field multiplier, Normal basis, Basis Massey and Omura [11] and its first VLSI im.plem.entation was
converse, Redundancy, Signal reuse. reported by Wang et al. [12]. A normal basis exists for every
finite field, so does this type of multipliers which are hereafter
referred to as Massey-Omura multipliers and [13]-[16] have
proposed a novel method to perform fast multiplication.
Efficient computations in finite field arithmetic and these
used in ECC; block ciphers, such as the Advanced Encryption
Standard (AES); coding theory, and test vector generation.Thdn this study we present an alternative design for finite field
most import application of finite field arithmetic is in publicmultiplier in the normal basis idy~ generated by an all one
key cryptography. A merging of communication networks angolynomial (AOP). The time complexity of proposed design is
public key cryptography technology is required in the desigsignificantly less than the bit-parallel multiplier designs for the
of security systems. The concept of public key cryptograpmormal basis. Moreover, we reduce the redundancy to design a
was introduced by Diffie and Hellman in 1976 [1] and the firstormal basis multiplier in the type 1 and type 2 Massey-Omura
PKC system was contributed by Rivest, Shamir, and Adlemanyltipliers. The space and time complexities of the design
called RSA. The modern encryption techniques can be dividate nearly the same as those of the modified Massey-Omura
into symmetric key and asymmetric key(public key). The RSAultiplier given for the fieldF,~ with an AOP. However, our
is the best well known public key system. The RSA publistudy is based on a different construction from the ones and an
key cryptosystem is based on the difficulty of integer factoeffective optimization by signal reuse algorithm for computing
ization. The system is widely accepted for digital signatumaultiplications over a class of fields,~. Moreover, two low-
and key exchange over communication networks. The anotleemplexity bit parallel finite field multipliers are presented
important public key system is elliptic curve cryptographyased on the algorithm.
In 1985, Koblitz [2] and Miller [3] independently introduced
elliptic curve cryptography. The elliptic curve cryptography
allows shorter operands to be used compared to the RSAThe rest of the paper is organized as follows: Section Il ,
The ECC is based the problem which is on the difficultye review the Massey-Omura multiplier algorithm; Section Il|
of discrete logarithm. The problems is located on the poingsovides preliminaries for this work; Section IV presents the
of an elliptic curve defined over a finite field. Public keycomplexity for signal reuse; Section V provides experimental
cryptosystems are computationally intensive and considerabdgults and constructive discussions; and finally, Section VI
slower than symmetric key cryptosystems. Efficient arithmetadfers conclusions.

I. INTRODUCTION
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I[I. PRELIMINARIES The standard basis of can be expressed as

A. Normal Basis Representation
Let 8 be an element of,~. A basis of the form
2 m—1
{,8%,8%,6% '}

is called a normal basis, wheflee Fym. An elementd € Fom
can be represented as

—

m—
2m,—1

A= Zajﬂzj =aof+ a1+t ama P,

=0

90
91
92
93
94
95
96
97

= 0407 +0*+0%+0'°+ 0% + 0% 4 0!8
= 0

= 62

= '+ 6%

= ¢

— 92 +932 T 964

— 98 +932

= 0+0',

Then, we can substitut® into normal basis as

wherea; € F»,0 < j < m—1is thejth coordinate ofd. An

elementA4 based on normal basis can be also represented sy =

coordinate form

co + 10 + 202 + ¢30° + c40* + ¢50° + 0% + ;07
co(6 4 0% + 0% + 6% + 06 1+ 632 4 6% 1 91%8)

0 + c20? 0* + 16 04
A= (ag,a1, -, am-1)- T oa ;L C2 32+ 03((34 T )8+ 0432 128
+ s5(0°+0°°+0°) +cg(6° 4+ 0°7) +cr(0+60°°°)
In the coordinate vectord will be written as = (co+c1+en)f+ (co+ s+ c5)6>
A= aﬁT _ ﬁaT’ + (cot+cez+ C4)94 + (co + 06)98 + (co + 06)016
, s + (co+ 5+ ¢6)03 + (co + ¢5)0% + (co + 7)1
wherea = (ao, a1, -+, am-1),8 = (8,6%---,6% ). An = dof + d162 + dob* + ds08 + dy0'® + ds0%? + dgf®*
element A can be easily squared by a cyclic shift of its 40128
coordinates as +odr
A2 2 2m—1 -
= Gmoftaoft et a2l Finally, the transformation matrix from standard basis to
= (am-1,00, -+, @m-1) normal basis can be written by

B. Conversions of Bases

T§ = (T3) ™"

Let v be an element it~ . The elementy with respect to C. Massey-Omura Multiplier

standard basis can be representation as

Let A and B be another element iy~ with vector

- representationd = 21.151 a3 = (ag,ai, -+, am—_1) and
'Y - Z czel B = ZT:Bl bJBQJ - (b07 b17 R} b'rn—l)- Letc be the prOduCt
— of A and B with vector representatiofcy, c1,- -, ¢m—1). Let

C denote their product, i.e.,

The standard bas& can be combined with normal basis as
) m—1 )
0= &o"
j=0

The#’ with respect to normal basis substitutes- 27" ¢;6°
with respect to standard basis. The transformation matrix from
standard basis to normal basis will be

vs =Ty

and

For example, lety be a element inF,s and they can be
expressed as

y=co+c10+ 202 + ¢50° + c,0* + c50° + c60° + +c767

wherec; € F». The standard basis and a irreducible are given
by
v={6°,6",66°06"6°6%07}

and
plz) =a® + 27 + 25 + 23 + 1.
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AB = (ap")(80")

52 bo
6 gm—1 bl
[ao,...,am_ﬂ : [6,,6 ] .
m—1
ﬁz bm—l
ax M x b
0, 60 0,01 0, ogm—1
62 +2 ﬂ2 +2 /82 +2
621"’_20 521+21 . ﬁ21+27n—1
62n1—1+20 ﬁ27n—1+21 ﬁ2m,—1+2'm,—1

[ coB+c1B?+ ... 4+ Cm_13

zm,—l

2m—l

L cof+ciB2+ ...+ cm_if3
MoB + M1+ ...+ My 13

Qm—l



where M; is am x m matrix overF,. All entries of M belong
to Fyw and if they are written w.r.t. the normal basis, then th
following is obtained

Iéig. 1. Bit series Massey-Omura multiplier

C = aMdT Another expression of multiplier for normal basis is
m—1
- CL(M()[}+M162+... +Mm‘71[32 )bT Cm—1—i = aMy,1-ib,i =0,---,m —1
T T\ 32 T\a2m !
(aMob™)B + (aM1b7)5 er':f (@M —1b7) We can also develop the bit parallel Massey Omura multiplier
= af+af+ ...+ ema1f as Fig. 2.
m—1 )
= 3o
i=0 Fig. 2. Bit parallel Massey-Omura multiplier
where

For example, letFy~ be the finite field generated by the
irreducible polynomialP(z) = x* + z3 + 1 whose root isx,
The componenic;,i = 0,1,...m — 1 of two elements i.e., p(a) = 0. These finite f|§ld operatilons of normal basis

: . . . and standard bases need basis conversion, whereas the standard

productC in Fym can be easily performed by a right cyclic__". B i o

e basis does not. Each type of finite field operation has its dis-
shift 4 times as . . . o .

tinct features and is thus suitable for specific applications, such

as square operation. Thus, we are often faced with the basis
conversion problems between two different implementations
of the same field such that the conversion between the two
The last component,,_; of C can be regarded as a Booleafases is efficient. The basis conversion from standard basis to

function of the components of and B, i.e., normal basis can be changed by transformation métfixas
shown in section 2.2. The transformation matii¥’ in the

Cm1—i = aMy, 1T = a DM, 1 (b@)T

[
a" = (A, Qm—it1s s Gt

b(l) = [bm—ia b7rL—i+17 ceey bm—i—l]

cm-1= f(ao, a1, -+, am-1;b0,b1, "+, bm_1) example is represented as
The other component; of C' can be written as o= o 01 0 0 1
2 _ 2 2
Cm—1 = aMmfle :f(aOvalvuwarnfl;bOablv"'7bm71) 044 =« 3 = a4 = 0010 0[2
el m—1 o =14« o 1 0 0 1 «
8 _ 2 3 8 3
- Z Z M jm—10b; a®=a+a‘+a « 01 1 1 «
i=0 j=0 If we choose standard basis and normal basis as shown in
Cm_o = aMy,_ob" = flam—1,a0...; @m—2;bm—1,bo..., by, _oJable 1ll. Using Table Ill, the representation of Massey Omura
m—1m—1
1 1 H
= 3% mim1aV [ o[ [ali][o [a [o®[a]
0 0] 00]1 T 1] 1|1
1 0|0 1]0 0| 001
' . 2 0| 1|0]O0 0| 0|10
co = aMpyd :f(al,ag,...,ao;bl,bg,...,bo) 3 1 0 0|0 1 0 1 1
m—1m—1 4 1 0 0|1 0 1 0 0
_ o (m—1); (m—1) 5 1 0 [1T]1 0 1 0 [ 1
= Z Z M, jm—10; bj 6 T 1 1 (1[0 111
i=0 j=0 7 0 T 11 1 1 0|0
Finally, the results of product in multiplier based on normal g cl) 1 é 2 i 2 8 (1)
basis can be represented as 10 T T o0 110 T T o T 110
, , 11 11|01 0| 1|10
M1 = aMp_1-b" a' My, 1 (0T o0 [ 1T 1[0 0011
~———— N—_———
— : — 1 1 1
parallel multiplier series multiplier 12 2 2 o 8 2 g 8 1
Tow elementsA and B in finite field F;» can be expressed
TABLE |

as

m—1

C=>
=0

where ¢; = aM;b, a and b are coordinate with respect tomultiplier and the key function can be represented as

THE TABLE OF STANDARD BASIS AND NORMAL BASIS INF24

normal basis. We also get the relation betwegn_;, a and

b as = axMxb"
. . 2 3 5 9
em-1—i = a' My 1 (b)) IR R T
[0 [0 « «
M —
According to the equation, we can develop the bit-series a® o o al?
Massey-Omura multiplier, as shown in Fig. 1. a? a'® a2«
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a? a8+a2+a

¢; is T4 + [log, Cn]Tx, whereT4 andTy are the delays of

— a® 4;0‘2 ta . 0‘42 one AND gate and one XOR gate, respectively. For parallel
& +404 « ga ga structure of allM; needsmCy AND and m(Cy — 1) XOR
a’tao +o a”+ o gates. Also, one can reduce the number of AND gatesto
ot +a a®+at+a by reusing multiplication terms ovef,. Thus, to reduce the
a* +a? +a a® +a? number of XOR gates, we have to choose a normal basis such
a® a® +at +a? that CN is minimum.
o®+at +a? o Theorem 1:For all F,~ over F,, there is the minimum
[0 1 1 1] 1100 complexity
_jrorof fro1 ] og Cn=2m—1
1100 0101 If Cy = 2m — 1, then the NB is called an optimal normal
L 1001 . 0110 basis, type-I or type-Il.
0 0 1 1 01 0 1
011 07 4 " 100 1} s [1l. THE OPTIMAL NORMAL BASIS ARCHITECTURE
Lo 0 0 11 We consider a multiplication inFy= for which f(xz) =
1 010 1 1 1 0

Mya + M1a2 + M2a4 + M3a8

>, @, that is, wheref (z) is an all one polynomial (AOP).
AOP provides the type 1 optimal normal basis multiplier. For

example, Given an irreduciblB(z) = 2* + 2® + 22 + 2 + 1,

We substitute the elementandb into the equation as o
the product of normal basis is expressed as

aMb? = (aMgb™)a + 8(aMle)oz2 + (aMob)a? PERY S BN 02 o3 1 ot
+(aMs3bT)a? M o= ad ot ab | | ot a1
01 11 - a® ab a8 2| T 1 a o o
10 1 0,p a¥ o'l a2 o at 1 a® «a
= (a b )a +
1 100
1 0 0 1 The element ofM have only two categories, which form

010 1 the cyclotomic coset ofa!, a?, a?, a*} and{a"}. The leader

1 00 1,5 element of cyclotomic coset is defined@&él < i < v), where
+(a 00 1 1 b )a v is the number of cyclotomic coset. Thus, the leader element

1 1 1

0 can be written as

51’ _ 62i+1 = ﬂ?”rl mod (m+1) _ 61’0 S l S m

(apb1 + apba + apbs + a1by + a1bs +

agbo + a2b1 + a3b0 + agbg)Oé + ... and

Thus, the generation af, requiresCy = 9 multiplications 2'+1=1 mod (m+1)

andCy —1 =9 —1 = 8 additions overr,. However, the key \ 01 _ o and; = » = m/2. Let 2 be a primitive element

function M has redundant ga_ltes, shpvyn n next_sectlon. of modulem + 1 and the number of cyclotomic is given by
The original normal basis multiplier was invented by
I1=2% mod (m+1),l#0

Massey and Omura and the multipliers were of least com-
plexity. Researchers gave a lower bound on the complexity
normal bases and defined the normal bases that have this lo
bound as optimal normal bases. Two types of optimal normal o { B2 i=1,2,...,m/2—1
bases are defined as type-1 and type-2 where the normal bases o 1 ,i=m/2
generated by an |rreduc!b!e a!l on polynomial belongs to t.yp\?\/_hereki is noted as

I. Unfortunately, not all finite fields are of all one polynomial,
such as finite fieldFys.

The results of multiplier of normal basis is given by

Cm—1—i = a'Mm—l—ibT = a(i)]\/[m—l(b(i))T

ﬁfgyv, let us denote

2 +1=2% mod (m+1)

Theorem 2:Let m + 1 be a prime and; be a primitive in
Zm+1- Then, the(m+1)th unit is linear independent and form
a optimal normal basis i~ over F.

The number of 1s in eachl,,—y—i,i = 0,---,m —1,iS | ot he an(m + 1)th unit root and is also a root in AOP.
denoted as complexity of multiplier. Because there are NONZ&Rase normal elements can be represented as
entries of M; consisted of the gate count of the normal basis

multiplier, Cy is referred to as the complexity of the normal
basis. The output,,_;_; of Massey-Omura multiplier can
be written as modulo 2 sum of exactlyy terms. Therefore,

N={a,a% ..,a?" '} = {a, 0% ..,a™}

and

the hardware implementation of requiresC'y, multiplications m
(AND gates) and”y — 1 additions (XOR gates). If these XOR ad™ =1=-Tr(a) =— Zo/
gates form the binary tree, then the total gate delay to generate i=1
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Theorem 3:Let 3 be a primitive(2m + 1)st root of unity
in Fom andy = B+ /1
basis. Then{r;,i = 1,---,m} with v; = g° + 3!
B2 t1l—i i =1,... mis also a basis iFym.

Note thaty also generates a normal basis

N={y+y7"

and the across term are

:5+

2

A+ )

Y+ HO +7)
(Y 7 D) 4 (17D 470,

a(y' ++77)

Let A, B € GF(2") is with respect to the type-2 basié

as
A= Zm = Zaiw’ +77)

=1

m m

B = szﬂi = Z bi(v +77")
i=1 i=1

The product of elementl and B can be represented as
O:A‘B:(Za17+’yi Zb 7+ 479)
=1

The product is also expressed by

= >3 an

i=1 j=1

1—J + /Y*(i*j))

Ca

where —m < (i — j) < m for all ¢,5 € [1,m]. Fori = j,
we can findy =7 +~~079) =40 4 40 = 0. Then,C; can be
written by

= Zzaiba‘(’Y

i=1 j=1

i—j_f_fy—(i_j)) —
1<i,j<m

wherei # j,k = |i —j| and 8, = v* +~~*. For example, the

coefficients of3, are the sum of alk;b; for which |i — j| = 1.

Table 1l shows the elements contributed by the summation
Also, the termC;, is expressed as

Cy = Zzab iy (i)
i=1 j=1
= Z z_: azb; (" 440Dy 4
i=1 j*l

ZJFJ + v (lJFJ))

> >

i=1 j=m—i+1
D1 + Dy
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generates a type 2 optimal normal

> a3y

B1 B2
a1ba + a2b1 a1bz + azby
a2b3 + azbz a2by + agbs

Am—2bm—1 + am—1bm—2 am—2bm + ambm 2

Am—1bm + ambm_1

ﬁm—Q Bm—l ﬁm
a1bm—1 +am—1b1 | a1bm +ambs
a2bm + amba
TABLE I
THE CONSTRUCTION OFC
‘ 61 ‘ BQ ‘ 63 ‘ co ‘ ﬁm—Q ‘ /Bm—l ‘ ﬁm ‘
aiby | aibs a1bm—3 | a1bm—2 | a1bm-—1
a2b1 a2bm_4 a2bm_3 a2bm 2
am—3b1 | am—3b2 | am—3bs
am—2b1 | am—2b2
am—1b1
TABLE 11l

THE CONSTRUCTION OFD1

The double summations are denoted By and D5, respec-
tively. Table 11l shows the construction of the summatibn.

On the other hand, the basis elementdifare all out of
range. We use the identity?”*! = 1 to bring them to the
proper range:

Dy aib; (v it+j +7—(l+]))

aibj (72m+1—(i+j) T 7—(2m+1—(i+j)))

IV. THE DISCUSSION OF REDUNDANCY FOR KEY

FUNCTION

Normal basis multiplier has the lowest complexity but there
is still redundancy in parallel normal basis multiplier. The key
function of parallel normal basis multiplier is a critical part for
finding the redundancy. The complexity of parallel multiplier
can be divided into space and time complexity in terms of
architecture. The Fig. 3 shows the complexity for normal basis
multiplier.

)

Fig. 3. The complexity for parallel and series multiplier.

Let 7, ;, is the binary value in(i,j) element of kth
matrix of M, where0 < 4,5,k < m — 1. There are some
characteristics in the key functialf of bit parallel multiplier.

1) Mijk = Mji k-

2) My = My 17 1k—1



3) If i+ 1=k, thenm, ; , = 1. Otherwisem; ; , = 0. V. SIMULATION RESULTS

4) If m is even, thenm,, 2 m/21i = Mo,m/2.i» Whereo < When coordinates of; have consecutive ones in its rep-
i<m/2-1. resentation with respect to the normal basis, the XOR count
The number of XOR gates if, is different from the other of the S; can be reduced by reusing partial sums. One such
S; whenm is an even number. Note that, although= 0.5 method has been shown in the Table IV where the prime is
for m being an even integer, the number of XOR gates,in 2m+ 1. Since the number of XOR gates saved by this method
is still an integer. Then, one can see tifa{d,) is an even depends on the representation ff, we show it with an
integer for all even values of:. Thus, the total number of example. LetFys be the finite field generated by the irreducible

XOR gates in the reduced redundancy multiplier is polynomial p(z) = 2% + z* 4+ 23 + 2% + 1 whose root isa,
i.e.,, p(a) = 0. The M matrix can be represented as
1
- 1 — r 2 3 5 9 16 14 10 7
Nx = (( +U+Z )—1)+eH(6,) — 1) «@ o o’ o a¥ ol o« o
> ot ab al% a ¥ al® ot
a® o o a'? o o a? ob?
— ) + Z H(6;) +eH(6,)) a¥ ot a2 b QT o ot Qf
M = 0 1 3 7 1 14 12 8
« « « (0% « « o «
a16 OZO OL2 056 Oé14 (}’l.‘i (Xll a?
. . . 14 15 0 4 12 11 9 5
The total number of ones in the representation of all entries aw 0411 0413 040 048 a7 “5 o
of M, Ny, is found by adding the ones ii;. As | & a o o o a a |

The cyclotomic cosef; of M has the same terms

01 = 02 and 0o = 03

Cn =H(M,),i=0,1,..,m—1,

thus L .
! Another example is given as follow: A type-l optimal

Ny =mCy. normal basis is generated by roots of an irreducible all one

) ) _polynomial. An all one polynomial of degree has its all
This number is equal to the sum of the number of ones in t 1 1 coefficients equal to 1, i.e

representation of all entries of triangular matrix and twice of
those in upper matrix of/, i.e, Pla)=a*+2>+ 2>+ +1.

The M; based on the all one polynomial has the samand

Nar = Np +2Nu O(a) = 5. The key function is written as

and ]
a2 043 a5 a9
Z H(0;) +€H(6y)) Mo o— o ot ab alf
- aS a6 aS a12
. . . Oég O510 a12 «a
By above equation and assigning,; = mCy and Np = m, L
we have a? a® 1 of
v—1 Cn — 1 _ ad ot a1
Z H(5;) +eH(6,) = N ) 1 a o a2
i1 2 i at 1 o o«
Finally, we have 00 10 01 10
_ (oo 1y 00 1,
NXZT(CN+m—2). 1100 1010
2 L0 1 01 0O 1 00

The number of XOR gate¥ yx as given in above equation can where thej, has consecutive ones in its representation with
be reduced by using optimization techniques. The time delespect to the normal basis as follow:
of the MO multiplier, 7¢, is given by - 0 0 101 0

0 1 0 0 1 1
_ (Cn+1) 0 0 1 1 0 0 0 1 0 1 0 1
To=Ta+[logy™ " 1Tx 1100|100 1]"|1o0oo0o0l]
and the number of XOR gates and the time delay of type-ll L 0 1 0 1] 0 1 10 1100
optimal normal basis multiplier are Mo M, M,
[0 1 1 0]
Nx = 15m(m —1) 100 1
1 0 1 0
and L0 1 0 0|
To =Ty + (1 + ”Og;n])Tx. M’3
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The on =1 of M; is the same, s@/ has the redundancy. We [4] A. J. Menezes, T. Okamoto, and S. A. Vanstone, "Reducing elliptic
present an alternative design for multiplication in the normal
basis for the field#,~ generated by signal reuse method. Tablq5]

IV shows contents of varioudn+ 1 variables of the proposed

method of signal reuse.

TABLE IV
THE PROPOSED SIGNAL REUSE FORBmM + 1 < 50

1.2m+1 is prime

2.2 is primitive in Zap, 41

32m+1=3 mod 4.2 gen.

42m +1=1 mod 4,2 gen.

QR

Type 2 1N(2U3))

Type 3 1 NEBU4)

1.2m+1 is prime

11

15

20

2.2 is primitive in Zap, 41

32m+1=3 mod 42 gen.

QR

42m +1=1 mod 4,2 gen.

QR

Type 2 (N(2U3))

Type 3 (NEBU4)

1.2m+1 is prime

21

23

26

29

2.2 is primitive in Zap, 41

32m+1=3 mod 4.2 gen.

OR

42m +1=1 mod 4.2 gen.

OR

Type 2 (1\(2U3))

Type 3 (1NBU4)

1.2m+1 is prime

33

36

41

2.2 is primitive in Zap, 11

32m+1=3 mod 42 gen.

OR

42m +1=1 mod 4.2 gen.

OR

Type 2 (1\(2U3))

Type 3 (1N\(3U4)

1.2m+1 is prime

a7

48

50

2.2 is primitive in Zom 41

32m+1=3 mod 4,2 gen.

QR

42m+1=1 mod 4,2 gen.

OR

Type 2 (L[\(2U3))

Type 3 (\(3U4)

VI. CONCLUSIONS

(6]

(7]
(8]
El

(10]

(11]

(12]

(13]

(14]

(18]

(16]

Proposed in this work is a low-complexity Massey-Omura
Multiplier based on normal bases in a variety of finite fields.
We used this parallel architectures for Massey-Omura mul-
tiplier with the modified multiplier matrix structure and a
low-complexity method is criticized for designing the mul-
tiplier, due to the fact that the operation complexity varies
exponentially with the degree of irreducible polynomial in
large finite fields. Rather the complexity exhibits a repetition
reduction method dependence on good irreducible polynomials
when performing multiple operation, making it applicable to
a multiplier with a large finite field.
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