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ABSTRACT 

In recent years there have been developments of 

assistive devices for the visually impaired and blind that 

uses computer vision. However, carrying extra devices can 

be a burden. Thus, we propose the use of a mobile phone 

application to detect obstacles and also determine the 

distance of these objects. The object detection model is 

instantiated from the MobileNet SDD v2 architecture 

which is designed for low-performance devices. On the 

other hand, we derived our depth estimation from the 

pinhole camera model to estimate the distance of the 

objects and achieve monocular depth estimation. The 

overall model returned a satisfying result of 0.19 m RMSE. 

Furthermore, object detection has an accuracy of 

approximately 73%. In addition, the said model is designed 

enough to handle depth estimation on real-time images and 

sudden camera tilt when the user is moving. 
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I. INTRODUCTION 

Blindness, vision loss, low vision, and people with 

visual impairment are terms generally used for people with 

visual disabilities that can affect a person's life. The World 

Health Organization states that 2.2 billion people around 

the world have vision impairment [1]. The impairment is 

not limited to any individual, given that a healthy person 

may lose their eyesight due to an accident or any 

unfortunate events that may lead to vision loss. To 

compensate for the loss of a person's vision, they seek 

assistance from others or rely on their other senses, such as 

hearing and touching. Assistive technologies are designed 

to assist people with disabilities to promote independence 

and improve the person's lifestyle. 

 

 Many assistive technologies exist that helps and 

assists the blind in day-to-day events. The researchers 

propose an idea that helps the visually impaired navigate 

the surroundings by detecting objects and informing the 

distances of the objects via a smartphone. The combination 

of machine learning and mathematical models are used to 

achieve the said proposal. 

 Images captured by smartphone cameras are helpful 

for blind navigation. Given the object is captured by the 

camera, specifically the foot of the object, the distance is 

possible to be calculated if the angle of view and height of 

the camera from the ground is known. The smartphone can 

be hung on the neck of the user for easier use. The 

following are the contribution of the proposed idea:  

1. Object-depth estimation designed for smartphone 

devices to assist the blind in navigation. 

2. Two-way sequential process: object detection and 

depth estimation. 

II. RELATED WORKS 

In this section we will present models that are used 

in object-depth estimation and their functionalities. This 

also serves as a guide in choosing the right model to reach 

the desired results. 

A. Object Detection: Object detection is a branch of 

computer vision that deals with localization and 

identification of an object [2]. The following are various 

object detection methods using artificial intelligence. First, 

TensorFlow Model Zoo is a collection of pre-trained object 

detection architectures, the model architecture included 

CenterNet, a deep Convolutional Neural Network (CNN) 

that is trained to detect each object as a triplet [3]. 

EfficientDet is a model that is built to scale up efficiency in 

computer vision [4]. Then there is MobileNet, a CNN 

architecture designed for mobile and embedded vision 

applications [5]. Another type is the RetinaNet which is a 

Feature Pyramid Network that generates a multi-scale 

convolutional feature pyramid on a feed-forward ResNet 

architecture [6]. The R-CNN is a 2-staged object detection 

architecture that sends region proposal down the pipeline 

for object classification and bounding box regression on the 

first stage [7]. ExtremeNet is an object detection 

framework that detects four extreme points of an object by 
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detecting four multi-peak heatmaps for each object 

category [8]. There are 2 versions of MobileNet SSD and 

their main difference is their convolutional layers that 

determines how expensive or costly they can be for 

programmers [9]. The first version has a depthwise 

convolutional layer which filters the inputs and followed by 

1x1 pointwise convolutional layer that combines these 

filtered inputs [9]. The second version has 3 convolutional 

layers, instead of having the pointwise convolutional layer 

where it keeps the channels the same or, it doubles the 

channels, the second version has a layer called the 

projection convolutional layer where it makes the number 

of channels smaller, where it projects data with high 

numbers of channels into a tensor with a much lower 

number of channels [9]. The newest layer for the latest 

version of MobileNet SSD is the expansion layer. This 

expansion layer expands the number of channels in the data 

before it goes to the depthwise convolution, then the new 

1x1 projection layer [9]. 

B. Pinhole Camera Model: The pinhole camera model is 

used to determine the coordinates of pixels to approximate 

2D images from a 3D environment [10]. The model is 

composed of 3 parts: the 3D object, the pinhole or camera 

center, and the image. The perpendicular distance between 

the image and the pinhole is the focal length while the line 

itself is called the optical axis [11]. The model is usually 

represented as a closed box with a single tiny hole called 

aperture where the light enters and hit the photosensitive 

surface inside the box [10, 11]. Using this model will 

capture an image inversely in terms of x and y position in 

2D plane. 

C. Depth Estimation using Monocular Image: There has 

been two ways of estimating the depth of the objects inside 

the monocular images: using mathematical equations [12, 

13, 14] or using artificial neural networks [13, 15, 16].  

Mathematical equations consider the characteristics of the 

camera such as field of view and sensor. On the other hand, 

artificial neural networks learn how depth is the object 

using a large amount of image datasets to predict a new set 

of images. [12] uses mathematical equation to estimate 

distance using the motion of the bounding boxes of an 

object. [2] stores default bounding box sizes per object class. 

Together with the bounding boxes of the new image, [2] 

can estimates the bounding box of the new image using an 

artificial neural network. Griffin and Corso (2021) 

demonstrated good results in depth estimation using 

artificial neural networks [15]. In addition, there are 

monocular cues that can be used to estimate the depth of 

the object like texture variations and gradients, defocus, and 

color or haze [13]. If the monocular cues are used, the 

process requires consideration of the global structure of the 

image. Pixel size of the object can also be used as a cue 

which is similar to the model of [2]. 

III. METHODOLOGIES 

A major step to blind navigation is to detect the 

objects around and then determine the distances of each 

object. The proposed model uses a smartphone device for 

assisting the blinds. The overall model is divided into two 

sequential processes: object detection and depth estimation. 

Object detection uses the camera of the device to capture a 

real-time image in front of the user and outputs the 

bounding boxes of the objects together with the labels. On 

the other hand, depth estimation needs the tilt angle of the 

device, the height of the camera lens from the floor, and the 

position of the objects in the captured image to estimate the 

depth of each object. Depth estimation relies on the vertical 

position of the objects from the image. Thus, the horizon 

line [17] plays a vital role in the estimation. Figure 1 shows 

real-time detection and estimation using a mobile phone. 

 

Figure 1. The smartphone captures a real-time image 

and inputs the image to the object detection model to 

generate bounding boxes B and labels L. Using the 

position of the objects in the image together with the 

camera height h and angle of tilt θ, distance D can be 

estimated. 

A. Object Detection 

 The object detection uses SSD MobileNet 

architecture as it is designed to work on low-performance 

devices compared to desktop computers. The architecture 

is a CNN that accepts an image as the input and outputs the 

bounding boxes and labels of the detected objects. The 

bounding box composes two image coordinates: x1, y1, x2, 

and y2, where the first coordinate points to the top left edge 

of the box or rectangle while the second points to the 

bottom right edge. An instanced model will be created and 

trained and then converted to the TensorFlow Lite version 

for the model to be compatible with mobile devices. 

B. Depth Estimation 

Depth estimation is done mathematically using 

trigonometry and the pinhole camera model. The angle of 

view and the height from the floor of the camera are 

needed to calculate the basis of measuring the depths of the 

objects detected from the real-time image from the base of 

the camera. In addition, the horizon line also plays a vital 

role in the model. The closer the objects to the horizon line, 

the farther the objects are in the real world. 

The model is designed to determine the depth of the 

objects on the floor, therefore, the objects which feet are 

below the horizon line are only to be estimated. Horizon 

lines are expected to be at the center of the image when the 

camera is facing parallel to the floor. Hence, half of the 

image can be measured as one image unit and can be 
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focused on calculation. When objects are detected in the 

images, the distance of each object in the real world is 

inversely proportional to the distance of the object from the 

horizon line. To generate the formula, the depth of the 

closest object must be determined first using 

D0 = H/tan(A/2), 

where D0 is the depth of the closest object, which is at the 

lower edge of the image, H is the height of the camera from 

the floor, and A is the vertical angle of view of the camera. 

D0 is also equivalent to the focal length of the pinhole 

camera model when H is 1 distance unit. The image-focal 

and H-D0 pattern forms 2 similar triangles, thus, if the 

distance of the object to the horizontal line is a image unit, 

then the depth of the object D is D0H/a. 

The formula above only works if the horizontal line 

is at the middle of the image. If the smartphone is tilted, the 

horizon line must also be shifted. Likewise, when the 

camera is facing parallel to the ground, the horizon line is 

expected to be at the middle of the image, but when the 

camera tilts, the horizon line changes its position. Figure 2 

shows a sample of the model to determine distance and 

figure 3 displays the image of the object that shifts the 

horizon when tilted. The shift in the position of the horizon 

line a1 can be calculated as D0tan(θ), where θ is the angle of 

tilt. Tilting the camera downward shifts the horizon line 

higher in the image. Recall that starting from the center of 

the image to the below half is measured as 1 image unit, 

therefore, the height of the image is 2 image units and the 

topmost can be labeled as -1 while the lowermost as 1 

giving 0 at the center. Accordingly, the new position of the 

horizontal line M would be -a1. On the other hand, the new 

distance of the object to the horizontal line a2 is now y2-M, 

where y2 is the vertical position of the foot of the image, 

thus the end formula is either of the following: 

D = D0H/a2, D = D0H/y2-M, or D = D0H/y2+a1. 

The limitation of the proposed model is that the model 

cannot accurately estimate the depth of the object when the 

foot is not captured, hence, objects that are behind another 

object, floating or not on the ground, or objects that are on 

the different floor of the smartphone are expected to have 

some discrepancies in measurement. 

 

Figure 2. Derived pinhole camera model with 28mm of 

focal length. Half the angle of view is 32°and generates 

1.6 units of distance (d) if the height (h) is 1 unit. The 

pitch of the mobile phone (θ) is also a factor in 

determining the distance of the foot of the object on the 

ground. 

 

Figure 3. Whole image from the pinhole camera. The 

middle value goes up when the camera tilts downward. 

The bigger the gap between the middle and the object’s 

foot, the nearer the object is. 

IV. EXPERIMENT AND ANALYSIS 

A. Setup 

The object detection model is instantiated from a 

trained model and is retrained in Google Colaboratory as the 

environment. The model is retrained to filter unnecessary 

objects and to focus on the objects that are to be detected. 

Furthermore, the instantiated architecture is the second 

version of MobileNet SSD for the reason that the 

architecture requires lesser multiply-accumulate operations  

on every image and uses fewer parameters which gives 

more speed to low-end devices compared to the first version. 

The model is trained until the least error is evaluated and is 

then converted into a tflite model together with the metadata 

for it to be compatible with mobile devices. 

The depth estimation is to be tested on the smartphone 

device with an Android platform. Furthremore, Tensorflow 

has already some templates for tflite model deployment. 

The proposed depth estimation model is just inserted into 

the source code and customized the output to show the 

bounding boxes and distances of the object. The device used 

in testing is a VIVO Y20s [G] phone with its rear camera. 

Finding the angle of view of the camera is A = 2arctan(d/2f), 

where d represents the size of the camera sensor and f is the 

focal length. In addition, the angle of tilt needed to find the 

value of a1 is not needed anymore. Android devices have 

gravity sensors that can directly determine the value of a1, in 

particular, the gravity on the y and z-axis. Y-axis points to 

the top of the device while the z-axis points in front. Using 

the ratio of similar triangles as shown in figure 3, vectors z 

and y are directly proportional to a1 and D0. When the 

device is perpendicular to the ground, y is 9.8 m/s2 and z is 0 

m/s2, then a1 is equal to 0 image units. Figure 4 exhibits the 

relationship of to calculate the various axes in the equation. 

 
Figure 4. Direct computation of a1 with a D0 of 1.6 

units using the gravity acceleration at the y-axis and 

z-axis of the mobile phone. 
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B. Dataset 

The dataset for the object detection model was 

gathered manually. Images were taken in real-time, and 

some were gathered in Google Image and then resized to 

640x480 pixel size in preparation for training. Overall, 200 

images were annotated with 16 labels in total. The labels 

include persons/people, vehicles such as cars and buses, 

pedestrian lanes, traffic lights, tree and tree branches, plants, 

boxes, dogs, walls, bikes, cans & bottles, carts, and poles. A 

small test dataset is also prepared that contains 22 images. 

 

C. Results 

The object detector model was trained until the 

combination of regression and classification loss is 1.94. 

The objects were accurately labeled with over 70% when 

tested with the test dataset. The model will be improved in 

subsequent applications. 

After converting the object detector into a tflite model 

together with the metadata, the Android application was 

built together with the depth estimation model. The 

application was tested on the neighborhood with a person 

and a car as the objects. The measurement used was in feet 

(ft), 0.3048 in meters (m), for the reason that the metric is 

more suitable for certain applications. Data was gathered in 

a combination of the camera height, tilt, real and estimated 

distance, and a boolean value if the foot the object is 

captured or not. Capturing the foot of the object can tell that 

the estimation is accurate. The gathered data is limit to 15ft 

or 4.572m and two tilt angles, 0 and -45 degrees. The 

gathered data is then analyzed by using the root mean 

squared error (RMSE) to measure how spread the residuals 

or errors are and by comparing how accurate the 

estimations are. Sample results are shown in figure 6. 

 
Figure 6: Sample output of the Android application. 

 

The raw gathered data was to be filtered first before 

calculating the RMSE. Data on which feet of the objects are 

not captured are not needed since depth estimation relies on 

where the position of the foot in the image is. Out of 22 

filtered data, the analysis gave a result of 0.64ft or 0.19m 

overall RMSE. Test results showed 73% detection accuracy. 

Furthermore, it was observed that the gathered data with 2-ft 

distances were less accurate because of the limitation of the 

angle of view of the camera. The camera needs to be tilted at 

least 45 degrees downward for the camera to capture the 

foot of the object given that the camera is at least 3ft above 

the ground 

V. CONCLUSIONS AND FUTURE 

WORK 

The mobile phone based object detection and monocular 

depth estimation for blind navigation assistance was 

successfully implemented using a smartphone device. The 

model was able to handle depth estimation using real-time 

images and sudden camera tilt while the user is moving. 

Object detection is instantiated from the MobileNet SSD v2 

architecture and got 70% accuracy in detecting objects. 

Subsequently, depth estimation is derived from the pinhole 

camera model. The angle of view of the camera and the 

height from the ground of the camera are also needed to 

estimate the depth of the objects in the image. The overall 

model gave a satisfying result of 0.64ft or 0.19m RMSE and 

73% accuracy at distances upto15ft or 4.572m. The result is 

good enough to assist the blind in navigation that can detect 

objects and estimate their distances. Although the proposed 

model has shown success, there is still room for 

improvement for depth estimation.  The limitation of the 

model relies on the angle of view and height of the camera. 

Therefore, the model cannot estimate objects that are not 

wholly captured especially the feet of the objects. A new 

major process must be added to handle the limitations of 

depth estimation. 
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