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ABSTRACT 

In this study, an assessment system integrating multiple 

physiological parameters was developed to investigate the 

exercise-induced fatigue of users who exercise at home. 

Because the majority of home-use exercise monitoring 

systems monitor only one single physiological parameter, 

these systems cannot accurately assess the user’s overall 

fatigue level. The proposed system monitors various 

parameters, including heart rate variability and 

electromyography, transmits its readings to a remote server 

for analysis, and uses fuzzy logic to assess the level of 

exercise-induced fatigue. Therefore, this system allows 

users to adjust their exercise intensity in a timely manner to 

prevent exercise-induced muscle injuries or discomfort. 

Comparison with the participants’ perceived fatigue levels 

revealed that the proposed system has 80% accuracy. 
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1. Introduction 

With advancements in medical technology, quality of 

life, and healthcare accessibility, health awareness has 

increased on a global scale. However, heavy workload and 

changes in eating habits often cause individuals to neglect 

their health. Although the optimal prescription for a healthy 

life is adequate exercise, the incidence of exercise-induced 

injuries, discomfort, and sudden death has been increasing 

[1, 2]. These events can be typically attributed to 

insufficient warmup, excessive mental strain, or 

exhaustion. 

When an individual exercises, their heartbeat changes 

as a result of their engagement in a physical activity. 

Therefore, heart rate (HR) can be used to assess an 

individual’s physical condition. In particular, heart rate 

variability (HRV), a parameter that represents changes in 

heartbeat intervals, is an index that indicates the ability of 
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the autonomic nervous system to control and maintain 

balance in physical and organ functions [3]. Because both 

the sympathetic and the parasympathetic nervous systems 

are affected when an individual engages in exercise, the 

changes in HRV that correspond to changes in the 

sympathetic and parasympathetic nervous systems reflect 

the state of the autonomic nervous system during exercise 

[4]. Macor et al. [5] reported that, at rest, athletes exhibited 

greater high-frequency (HF) power in their HRV 

compared with nonathletes. However, during exercise, 

both athletes and nonathletes exhibited substantially 

reduced low-frequency (LF) and HF power in their HRV. 

In a physiological study, Baselli et al. [6] reported that the 

HRV of individuals who exercised to the point of fatigue 

had clearly low HF and LF peaks and LF/HF ratio, 

suggesting a reduction in the activity of the sympathetic 

and parasympathetic nervous systems. Mattioli and Araújo 

[7] reported that individuals who engaged in exercise had 

progressively decreasing total power (TP) in their HRV. 

Overall, these results indicated that HRV-related 

time–frequency parameters are key indices in the 

evaluation of motor functions. 

Surface electromyography (EMG) is frequently used to 

evaluate muscle fatigue [8, 9]. Exercise-induced muscle 

fatigue, which is a temporary reduction in muscle 

contraction strength as a result of physical activity, can be 

monitored through changes in surface EMG (SEMG) 

parameters in the affected site [10]. In an EMG 

time-domain analysis study, DeVries [11] reported that 

when knee extensors and elbow flexors were used during 

static sedentary work, the root mean square (RMS) 

amplitudes of the EMG increased with  time. In a 

frequency-domain analysis study, Paavo and Per [12] 

reported that when their participants engaged in knee 

extension exercise at a constant angular velocity until 

muscle fatigue, the SEMG frequency spectra of their 

quadriceps shifted toward lower frequencies, and these 

muscles exhibited progressively decreasing mean power 

frequencies (MPFs). In a study comparing changes in the 

SEMG frequency spectra of biceps brachii muscles and 

quadriceps femoris muscles, Sadoyama and Miyano [13] 

reported that, after the development of fatigue following 

isometric contractions, both muscle types exhibited 

gradually decreasing MPFs and leftward-shifting SEMG 

frequency spectra, which were particularly noticeable in the 

biceps brachii muscles. In a study of isokinetic knee 
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contractions, Tomoki and Toshihiro [14] observed and 

reported that, after the development of fatigue, the muscles 

performing this exercise exhibited a linearly decreasing 

SEMG median frequency (MF). 

Generally, muscles are categorized as either fast-twitch 

or slow-twitch muscles. Fast-twitch muscles are powerful 

but fatigue rapidly. Therefore, once fatigue sets in, 

slow-twitch muscles become responsible for strength 

output. This phenomenon causes the EMG frequency 

spectrum to shift toward lower frequencies (because the 

motor units in slow-twitch muscles tend to have a low 

frequency), which in turn decreases the MF and MPF. As 

shown in Fig. 1, electrical activity (EA), a parameter in the 

time domain, and MF, a parameter in the frequency 

domain, can be combined through the joint analysis of 

EMG spectrum and amplitude (JASA) to determine the 

level of muscle fatigue depending on EMG signal intensity 

and frequency distribution [15]. 

Although physiological monitoring devices are widely 

used in household settings, these devices are incapable of 

determining the overall level of physical fatigue because 

they can monitor only one physiological parameter. In this 

study, an integrative system capable of monitoring multiple 

physiological parameters, wirelessly transmitting its 

readings to a remote server for analysis, and using fuzzy 

theory was proposed. By integrating multiple physiological 

parameters into a single all-inclusive parameter, this system 

allows for reasonably estimating exercise-induced fatigue. 

The quantified estimate is then sent back to the user from 

the remote server, thereby allowing the user to adjust their 

exercise intensity and avoid overtraining (Fig. 2). 

 
Figure 1. Relationship between EMG and frequency 

spectrum changes. 

2. Methodology 

This study is divided into three parts. The first part 
involves the development of a wireless physiological 
multiparameter system with low power consumption. This 
system is portable (i.e., small and lightweight) and can extract 
physiological information, such as electrocardiography (ECG) 
and EMG signals. The second part involves the development 
of an intelligent body area network platform equipped with a 
2.4-GHz wireless transmission module for the wireless 
transmission of physiological signals, thereby eliminating the  

 

 
Figure 2. Portable wireless multiparameter system for the assessment of exercise-induced fatigue.  

 

inconvenience caused by transmission cables. The third 

part involves the development of a remote management 

system, which was designed to enable the remote analysis 

of physiological parameters by trained professionals and 

the transmission of feedback to the user to prevent 

fatigue-induced injuries. 

2.1. System Architecture  

As shown in Fig. 3, the development of the proposed 

system involved a hardware configuration phase and a 

physiological parameter computation phase. The hardware 

configuration included a power circuit, a wave filter, an 

ECG module, an EMG module, a wireless transmission 

and reception module, and a data acquisition interface. 

Physiological parameter computation was performed as 

follows. Original readings were first extracted from the data 

acquisition card and then computed in h the Lab’s Virtual 

Instrumentation Engineering Workbench (LabVIEW), 
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including the time-domain and frequency-domain changes 

of HRV and EMG signals. 

 

 
 

Figure 3. Block diagram for the proposed measuring system. 

2.1.1. Design of the ECG Measurement Circuit  

After the electric potential difference was 

measured in the electrode pads, the signals were 

preamplified using an AD620 instrumentation 

amplifier. Because the ECG signals of interest were 

between 0.05 and 100 Hz, the signals within this 

range were amplified, whereas those outside this 

range were attenuated. A low-pass filter (100 Hz) and 

a high-pass filter (0.05 Hz) were then used to remove 

signals of unwanted frequencies. The remaining 

signals were output after passing through a 

noninverting amplifier (Fig. 4). 

 

 
Figure 4. Block diagram for ECG measurement.  

2.1.2. Design of the EMG Measurement Circuit  

EMG signals were acquired by measuring the 

changes in action potential in activated muscle fibers. 

To measure the changes in electric potential in the 

muscles, electrode pads were attached on the 

gastrocnemius and soleus muscles, with a reference 

electrode placed on the ankle. However, the readings 

were extremely low and required preamplification by 

an instrumentation amplifier (AD620). Because the 

EMG signals of interest were between 100 Hz and 1 

KHz, the signals within this range were amplified, and 

those outside this range were attenuated. A low-pass 

filter (1 KHz) and a high-pass filter (100 Hz) were 

then used to remove signals of unwanted frequencies. 

The remaining signals were output after passing 

through a noninverting amplifier (Fig. 5). 

 

 
Figure 5. Block diagram for EMG measurement.  

2.1.3. Intelligent Body Area Network Platform  

As a result of the development of biosensors in 

medical applications, wireless sensor networks, which 

have  

been originally used in military, scientific, and civic 

disciplines, have been integrated into sensor networks 

in close proximity to the human body. These networks 

are called wireless body area networks (WBANs). 

Optimally, a wireless network should feature 

self-configuration, fault tolerance, security, and 

self-repair capabilities. Therefore, intelligent node 

application is well suited for WBANs. Generally,  

WBANs are characterized by a large number of 

sensor nodes or actuators deployed in a small area; a 

large bandwidth requirement and network architecture; 

the ability to connect with adjacent networks; network 

nodes that indefinitely remain active in 

low-duty-cycle sleeping mode; wireless sensors that 

“know” what to measure; multihop routing of data 

packets, which means data packets are transmitted 

through multiple wireless nodes; no fixed network 

topology, which means all nodes in the network can 

be moved; and a low-power transmission protocol. In 

this study, a 2.4-GHz wireless broadband audiovisual 

transmission system from RichWave (Taipei City, 

Taiwan) was used as a WBAN. As shown in Fig. 6, 

the system consists of a 2.4-GHz frequency 

modulation (FM)/frequency-shift keying (FSK) 

transmitter (RTC6701), a 2.4-GHz FM/FSK receiver 

(RTC6711), and a dual-channel volume control 

integrated circuit unit (RTC6721). 

 

   
Transmission module       Reception module 

Figure 6. B RW67RX-SA01 wireless transmission 

and reception module. 

2.1.4. Remote Network Management  

In this study, remote network management was 

achieved using Simple Network Management 

Protocol (SNMP). Because SNMP conforms to the 

currently established network, communication, and 

management standards, hardware incompatibility is 

not a concern provided that all the hardware of the 

system conforms to these standards. As shown in Fig. 

7, SNMP primarily consists of a network management 
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system (NMS), an agent, and a management 

information base (MIB). The NMS is responsible for 

managing the network, collecting data from various 

agents, and generating simple statistical diagrams. The 

Multi Router Traffic Grapher is a commonly used tool 

for generating diagrams from the data collected 

through SNMP. The agent is a software program 

installed on a managed device. It collects data from 

the device and transmits these data to the NMS. The 

NMS periodically requests data from the agent 

through polling. As an alternative, when an 

emergency occurs, the agent actively reports to the 

NMS through trap messages. The MIB then 

hierarchically displays the attributes of the managed 

device. By using a standardized MIB, the NMS can 

manage various devices made by different 

manufacturers. 

 

 
Figure 7. SNMP model. 

2.2. Experimental procedures 

Ten individuals aged 20–30 were invited to 

participate in the experiment, which involved riding a 

stationary bike with a progressively increasing 

intensity, as per the recommendations of the World 

Health Organization (Table I). A wireless 

transmission module was used to send the 

physiological signals of the participants to a remote 

server. These signals included ECG and EMG (calf 

muscles) signals, which were recorded for 3 min at 

each of six load levels. Various indices were used to 

determine whether any of the participants exhibited 

signs of fatigue. The experimental procedures were as 

follows: 

Step 1: Place the measurement modules on a 

participant. 

Step 2: Adjust the pedal and seat positions to reduce 

physical exertion. 

Step 3: Check system operation and signal 

waveforms. 

Step 4: Activate the system and take readings. 

Step 5: Start at load level 1 and take readings for 3 

min. Progressively move to load level 6, with 30 s of 

rest between each load level. 

Step 6: Send the readings to the remote server for 

physiological parameter calculation. 

 

 

TABLE I 

PROGRESSIVELY INCREASING LOAD LEVELS 

Load 

level 

Load 

intensity 

(W) 

Test time 

(min) 

Pedaling 

speed 

(rpm) 

1 100 3 70 

2 150 3 70 

3 200 3 80 

4 250 3 80 

5 300 3 80 

6 350 3 80 

 

3. Results and Discussion  

3.1. ECG Analysis 

 Fig. 8 presents the results of the ECG analysis. 

As shown in Fig. 8(a), HR increased with increasing 

load level and fatigue. In the HRV time-domain 

analysis, the standard deviation of NN intervals, a 

key parameter in HRV evaluations, decreased with 

increasing load level, as shown in Fig. 8(b). In the 

HRV frequency-domain analysis, very low frequency 

(VLF), a key parameter that represents sympathetic 

activity, decreased with increasing load level or with 

the onset of fatigue, as shown in Fig. 8(c). LF, which 

reflects the regulation of both the sympathetic and the 

parasympathetic nervous systems, decreased with 

increasing load level or with the onset of fatigue, as 

shown in Fig. 8(d). HF, which reflects 

parasympathetic activity, decreased with increasing 

load level, as shown in Fig. 8(e). The LF/HF ratio, 

which reflects the balance of autonomic activity, 

decreased with increasing load level or with the onset 

of fatigue, indicating a gradual malfunctioning of 

autonomic activity, as shown in Fig. 8(f). Because 

muscle fatigue was observed in all six parameters, the 

effectiveness of the experimental design in inducing 

muscle fatigue was confirmed. 

 

 
(a) 
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(b) 

 
(c) 

 
(d) 

  
(e) 

 
(f) 

Figure 8. ECG analysis. 

 

3.2. EMG Analysis 

Figs. 9–11 present the results of the EMG 

analysis. As shown in Fig. 9(a), the RMS increased 

with increasing load level or fatigue level. However, 

the MPF decreased with increasing load level or 

fatigue level, as shown in Fig. 9(b). These results are 

consistent with the literature [11, 12]. 

 

 
(a) 

 
(b) 

Figure 9. EMG analysis. 

 

 Fig. 10 compares the EMG power spectra of 

load levels 1 and 6. When the load level (and hence 

the level of fatigue) increased, the spectrum shifted 

toward lower frequencies. This trend is consistent 

with the results of [13]. 

 

 
Figure 10. EMG power spectra of load levels 1 and 

6.  

 

 As shown in Fig. 11(a), at load levels 1 and 2, 

the EA and MF concurrently increased, indicating that 

all participants were still increasing their strength 

output (i.e., muscle fatigue has not yet set in). 

However, as shown in Fig. 11(b), at load levels 3 and 

4, the participants’ muscle conditions started to 

change. In other words, some participants were still 

increasing their strength output, whereas others started 
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to show signs of decreased muscle strength or even 

fatigue. As shown in Fig. 11(c), at load levels 5 and 6, 

the participants completely fatigued and lost their 

muscle strength. Hence, according to the distribution 

of JASA coordinates, the participants’ muscles 

gradually demonstrated signs of fatigue as the load 

level increased. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 11. Distribution of JASA coordinates at 

load levels 1–6. 

3.3. Integration of Multiple Parameters 

To achieve greater accuracy and robustness in 

the assessment of exercise-induced fatigue, multiple 

parameters were integrated using a fuzzy logic 

method. A fuzzy model was designed using the Fuzzy 

Toolbox of MATLAB (MathWorks, Natick, MA 

USA). As shown in Fig. 12, the model consisted of 

four components: a fuzzification component, a rule 

base component, an inference engine component, and 

a defuzzification component. The parameters that 

were identified as relevant, namely SNDD, LF, 

LF/HF, and RMS, were used as the input. Comparison 

of the assessment results of the fuzzy-integrated 

parameter and the participants’ perceived fatigue 

levels revealed that the assessment was accurate for 

eight out of the ten participants and inaccurate for the 

remaining two. 

 
Figure 12. Multiple parameter integration system. 

4. Conclusion 

In this study, HRV and EMG parameters were 

integrated to develop a wireless portable assessment 

system for exercise-induced fatigue for home use. The 

results confirmed the relevance of HRV and EMG 

parameters for exercise-induced fatigue. When these 

parameters were integrated using fuzzy logic, an 

accuracy of 80% was achieved. In future studies, in 

addition to increasing the sample size to improve 

system practicality, other computation methods 

should be evaluated to enhance system accuracy. 
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