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ABSTRACT 

When developing cloud services, the engineers would 

rapidly maintain the development environments, e.g., the 

Platform as a Service, for creating, modifying, and 

destroying environments. VMware provides some services 

to realize the about necessary. However, the major issues in 

considering the above services are the integration. The 

above services fit the necessary of the development 

environment, but the engineers would switch the working 

platform for various purposes. To increase the service 

integration, we have to develop the core service and 

encapsulate it as the core service modular, so the 

applications could involve the modular to realize various 

purposes. In this work, we develop the Rapid Virtual 

Development Environment (RVDE) to realize the above 

necessary. The RVDE applies VMware REST APIs to the 

major action invocations; Node.js is considered to bridge 

the user commands and actions; Ansible Playbook is used 

to create the major action scripts. The engineers using the 

RVDE provide the necessary parameters for the target 

environments, and the RVDE will automatically create the 

development environments based on the given parameters, 

e.g. IP addresses, login information, and other system 

configurations. The RVDE provides easy and rapid use 

from the experiments, and the environment creation time is 

saved by 90% for the environment configuration. 
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I. INTRODUCTION 

Virtual machines (VM) are useful in increasing host 

utilization, and the cost of maintaining servers would be 

reduced. Therefore, a lot of applications consider the VMs 

to be the infrastructure. For example, environment 

detection [1] [2] [4], illness prediction [3] [6], 

manufacturing [8] [9], scheduling [7] [10], and education 

[5]. The architecture of VMs is illustrated in Figure 1. The 

VMs share the host resource with the hypervisor. The 

single host may provide several VMs so that the host 

utilization could be increased in VMs.  

However, the major issue of VMs is resource 

optimization. Hypervisor visualizes the hardware resources 

to support the virtual hardware for funning VMs, as shown 

in Figure 1. Therefore, each VM has a private and virtual 

hardware profile, and resource virtualization increases 

hardware utilization. However, the data redundancy is not 

optimized by the hypervisor. For example, the VMs with 

the operating system have the same system software, and 

they are duplicated in various VMs. The same so that the 

same files appear in several VMs, and the many spaces are 

used to save the same data. 

 

 

Figure 1. The architecture of VMs. 
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Figure 2. The architecture of Dockers. 

 

Docker considers the shared memory architecture to 

enhance resource-sharing performance. As shown in 

Figure 2, the host has exactly one operating system. The 

docker engine runs based on the host operating system, 

while the docker applications share low-level resources, 

such as the common operating system service and the 

hardware instructions. Therefore, the common low-level 

resources are shared with docker applications, and only a 

few resources are required. 

However, the major issue of docker is security [11] 

because the low-level resources are shared. Various docker 

applications use the same resource to execute different jobs, 

so the malicious applications would invalidly access other 

applications’ data based on the shared resource architecture. 

Thus, access control in docker applications is a critical 

research topic [16]. 

On the other hand, the low-level resources are 

independent in the VMs, so the security issues of docker do 

not appear in VMs. Therefore, for the security issue, this 

work considers the VM to improve the efficiency of 

deploying VMs. 

To resolve the above optimization issue of VMs, the 

dockers [12][13] and Kubernetes [14][15] are proposed to 

reduce the duplicated files. The docker architecture is 

drawn in Figure 2. The creation process includes three 

phases: 1) VM setup, 2) VM creation, and 3) VM 

configuration. In the VM setup phase, the specifications of 

VMs are determined and sent to VMware vSphere, such as 

CPU number, RAM size, and disk space. In the VM 

creation, VMware vSphere creates the VMs according to 

the received VM specification. After the second phase, the 

VMs are duplicated with the specified specification, but the 

software configuration is not changed, such as the user 

account and password. Therefore, the third phase, the VM 

configuration, modifies the configurations. 

 

 

Figure 3. The flowchart of creating a VM. 

 

From the implementation, the second phase process is 

executed by vSphere automatically, while users handle the 

first and third phase processes. The variance in the degree 

of VM customization increases the manpower requirement. 

In other words, creating VMs with various configurations 

require more manpower than that with single ones. 

Therefore, this work constructs an automatic VM 

deployment service, Rapid Virtual Development 

Environment (RVDE), to reduce manpower investigation 

and increase job efficiency.  

From the experiment results, the proposed RVDE 

creates the specific VMs correctly. On the other hand, all 

VMs are automatically deployed by the proposed RVDE, 

so the manpower investigation is decreased. In other words, 

the feasibility and the efficiency of the proposed RVDE are 

confirmed. 

Section II describes the proposed approach RVDE in 

the following content of this article to build up specific 

VMs. We apply some experiments to evaluate the 

efficiency and feasibility of the proposed RVDE, and the 

results are discussed in Section III. The conclusion and 

future works are illustrated in Section IV. 

 

II. PROPOSED METHOD:  

The software architecture of the proposed RVDE 

platform is illustrated in Figure 4. The RVDE platform is 

built on Windows 10. The major services include Node.js, 

WebSocket, Express, and Ansible. Node.js is used to 

communicate and integrate the entire service of the 

proposed RVDE; WebSocket is used to exchange the data 

between the proposed RVDE platform and the VMware, 

which includes the VMware REST API and VMware 

vSphere; Express is the integrated package for Node.js; 

Ansible is used to modify the system configuration of the 

target VMs. 
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Figure 4. The service architecture of the proposed 

Rapid Virtual Development Environment 

platform. 

 

The proposed RVDE platform consists of three 

processes: 1) the user provides commands, 2) the RVDE 

creates VMs, and 3) the RVDE modifies the system 

configurations of the created VMs. The architectures of the 

above processes are illustrated in Figure 5, Figure 6, and 

Figure 7, respectively. The details of each process are 

described in the following. 

The user interaction diagram for the communication 

between the user command and the service script creation is 

drawn in Figure 5. The user on the left-hand side of Figure 

5 provides the system configurations of VMs via the user 

interface of the RVDE. The RVDE generates the Ansible 

playbook by Node.js, and the Ansible playbook is 

constructed in the YAML format. Then, the Ansible 

playbooks will be delivered to Ansible. Eventually, the 

system configurations will be sent to VMware REST API 

to do the actions. 

 

 

Figure 5. The user interaction diagram for the 

communication between the user command 

and the service script creation. 

 

The details about the actions of the playbook 

generations are illustrated in Figure 6. Node.js in the RVDE 

consists of two major functions: the WebSocket Server and 

Express Server. The WebSocket Server provides the 

low-level process of the network access service, while the 

Express Server provides the necessary functions for Node.js. 

Express Server generates the Ansible playbook in YAML 

format, which describes the system configuration of VMs. 

Therefore, the actions of VM creation are divided into two 

jobs: 1) the VM creation, and 2) the VM modification, and 

the jobs are handled by Express Server. On the other hand, 

the RVDE invokes VMware REST API to create the VMs. 

Since the VM creation process only duplicates the VM by 

the specified VMs or VM templates. In other words, the 

Express Server sends the VM creation actions to the 

VMware REST API and the system configurations to 

Ansible. 

 

 

Figure 6. The architecture of creating the system 

configuration script is based on the user’s 

command. 

 

The actions between the Express Server in Figure 5 

and the VM creation actions are illustrated in Figure 7. 

VMware REST API makes the major process of creating 

VMs in the VMware vSphere. Since the resources of real 

hosts are virtualized by vSphere, all processes are well 

monitored under vSphere. After receiving the VM creation 

missions, VMware REST API duplicates the VM by the 

specified VMs or VM templates. The duplications will be 

assigned the resource, and the records will be saved in the 

database. All the above VM creation processes are 

processed by VMware REST APIs. The creation progress 

will be returned, and the user can monitor the current status 

of the VM creation. 

 

 

Figure 7. The architecture of service communication 

between the VMware REST API and the 

hosts. 

 

III. EXPERIMENTAL ANALYSIS 

The usage of the proposed RVDE consists of two sides: 

1) the server side, and 2) the client side. The VMs are 

created on the server side while the commands are received 

from users on the client side. We consider the server farm 

with five hosts for the server side, while two workstations 

are used to be the client side as shown in Figure 8 and 

Figure 9, respectively. The software and hardware 

specifications are listed in Table 1 and Table 2 for the 

server and client sides, respectively.  

On the server side, the host resource is virtualized by 

VMware ESXi 6, and 10Gb Ethernet connects the storage 
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and the server farm. All VMs are deployed in the storage 

rather than the local storage. The vCenter handles the VM 

maintenance on the server side. Therefore, the server farm is 

controlled by vCenter because of the virtualization 

maintenance, such as the high availability, power balancing, 

and load balancing. 

 

Table 1. The hardware and software specification of the 

test server farm. 

 Specifications 

# of server 5 

CPU (per host) 
Intel(R) Xeon(R) CPU E5-2650 v4 @ 

2.20GHz 

RAM 192 GB 

Storage 
MSA 2050 

9 TB 

Hypervisor VMware ESXi, 6.0.0 

 

 

Figure 8. The experiment server farm is used to 

evaluate the performance of the proposed 

RVDE.  

 

Two Windows-based workstations handle the process 

on the client side. The Linux-based platform provides higher 

performance with lower hardware resource requirements. 

However, the target audience of the RVDE is basic IT 

engineers, so the Windows-based platforms are more 

friendly than the Linux-based platforms. The specification 

of the workstations is similar to the personal computer, but 

the workstations provide higher stability and redundancy 

than personal computers. Therefore, the workstations are 

more appropriate than personal computers.  

 

Table 2. The hardware and software specifications of 

the experiment client workstations. 

 Specifications 

# of server 2 

CPU (per host) 
Intel(R) Core(TM) i5-9500 CPU @ 

3.00GHz   3.00 GHz 

RAM 64 GB 

Storage 
CT500MX500SSD 

500 GB 

 

 

Figure 9. The experiment client workstations which are 

used to access the proposed RVDE and 

provide the commands. 

 

In the experiment, we consider two batches with 

various IP addresses to evaluate the correctness of VM 

creation. The specifications of the two batches are illustrated 

in Figure 10 and Figure 11, respectively, while the created 

VM results are drawn in Figure 12 and Figure 13. The 

VMs’ names and the IP addresses are the major differences 

in the two experiments. For convince, we consider two VM 

names to identify the VMs. The VMs are connected to the 

network when VMs are created, so the IP addresses should 

be different.  

 

 

Figure 10. The VM specification of the first test. 
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Figure 11. The VM specification of the second test. 

 

 
Figure 12. The result of creating VMs according to the 

specification in the first test. 

 

 
Figure 13. The result of creating VMs according to the 

specification in the second test. 

 

 

Figure 14. The specification of created VM with the 

name qwe_2. 

 

The experiment results illustrated in Figure 12 and 

Figure 13 are captured by the RVDE logs. The 

specifications of all created VMs are the same as that 

provided by the user. Therefore, the proposed RVDE 

correctly creates the VMs according to the specifications 

provided by the user. Moreover, to evaluate the actual 

specification, we capture the specification of created VM 

named qwe_2 that is detected by vSphere, and the result is 

illustrated in Figure 14. The hardware specification of the 

VM qwe_2 is the same as that provided by the user, 

including the CPU number, memory size, disk space, and IP 

address. In other words, the proposed RVDE provides 

correct and automatic VM creation. 

 

IV. CONCLUSIONS 

In this paper, a rapid VM creation service, which is 

named RVDE (Rapid Virtual Development Environment) 

is proposed to save manpower to set up the VMs and 

configure the systems. To create a large number of 

customized VMs, the information and technology engineers 

should set up VMs by the specifications and input the VM 

specifications to the hypervisor, e.g., VMware vSphere. 

Then, the hypervisor creates the VMs according to the VM 

specifications. After the VMs are created, the information 

and technology engineers have to enter each VM to set up 

the system configuration. For example, the user account, 

login password, and IP address. The proposed RVDE 

decreases the time investigated by the information and 

technology engineers. Moreover, the proposed RVDE 

provides the batch process, and in other words, the 

information and technology engineers only require 

preparing the system specification for the RVDE, and the 

RVDE will create the VMs automatically. The manpower 

is released by the RVDE. 

The RVDE could be applied to deploy a large number 

of VMs. For example, the education needs to create several 

VMs for the implementation topics in a class, and the 

RVDE could help in this scenario. Adjusting the scale of 
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cloud service. The high-performance computing needs huge 

computing power to finish the jobs. Deploying physical 

devices to provide computing power is a straightforward 

solution. However, computer power is not always necessary, 

and it takes place only when the jobs are coming. When the 

jobs arrive, the engineers could use the RVDE to create 

VMs rapidly to increase the scale of the computing power. 

So, the response time of the cloud service would be reduced 

by the RVDE. 

The proposed RVDE creates customized VMs rapidly, 

but managing the ecosystem of cloud service still needs to 

consider more services to increase the service completeness. 

For example, the service destroy is a critical service. When 

the mission is completed, the VMs should be destroyed to 

release the hardware resources. On the other hand, the 

system service should be monitored online to guarantee the 

performance of each VM. Therefore, in the future, we will 

consider the above two issues to increase the completeness 

of the RVDE. 
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