
 International Journal on Computer, Consumer and Control (IJ3C), Vol. 12, No.1 (2023)

1

On Construction of a Rapid Virtual Development Environment

for VMware Ecosystem

Chen-Kun Tsung1*, Xin-Ting Zhang 1, Ming-Cheng Tsai 2, Chih-Wei Wu 2

ABSTRACT

When developing cloud services, the engineers would

rapidly maintain the development environments, e.g., the

Platform as a Service, for creating, modifying, and

destroying environments. VMware provides some services

to realize the about necessary. However, the major issues in

considering the above services are the integration. The

above services fit the necessary of the development

environment, but the engineers would switch the working

platform for various purposes. To increase the service

integration, we have to develop the core service and

encapsulate it as the core service modular, so the

applications could involve the modular to realize various

purposes. In this work, we develop the Rapid Virtual

Development Environment (RVDE) to realize the above

necessary. The RVDE applies VMware REST APIs to the

major action invocations; Node.js is considered to bridge

the user commands and actions; Ansible Playbook is used

to create the major action scripts. The engineers using the

RVDE provide the necessary parameters for the target

environments, and the RVDE will automatically create the

development environments based on the given parameters,

e.g. IP addresses, login information, and other system

configurations. The RVDE provides easy and rapid use

from the experiments, and the environment creation time is

saved by 90% for the environment configuration.

Keywords: API integration, VMware, Cloud Computing,

Platform as a Service

I. INTRODUCTION

Virtual machines (VM) are useful in increasing host

utilization, and the cost of maintaining servers would be

reduced. Therefore, a lot of applications consider the VMs

to be the infrastructure. For example, environment

detection [1] [2] [4], illness prediction [3] [6],

manufacturing [8] [9], scheduling [7] [10], and education

[5]. The architecture of VMs is illustrated in Figure 1. The

VMs share the host resource with the hypervisor. The

single host may provide several VMs so that the host

utilization could be increased in VMs.

However, the major issue of VMs is resource

optimization. Hypervisor visualizes the hardware resources

to support the virtual hardware for funning VMs, as shown

in Figure 1. Therefore, each VM has a private and virtual

hardware profile, and resource virtualization increases

hardware utilization. However, the data redundancy is not

optimized by the hypervisor. For example, the VMs with

the operating system have the same system software, and

they are duplicated in various VMs. The same so that the

same files appear in several VMs, and the many spaces are

used to save the same data.

Figure 1. The architecture of VMs.

*Corresponding Author: Xin-Ting Zhang (E-mail:
3a817013@gm.student.ncut.edu.tw).
1 Department of Computer Science and Information Engineering

National Chin-Yi University of Technology, No.57, Sec. 2, Zhongshan Rd.,
Taiping Dist., Taichung 411030, Taiwan (R.O.C.)
2 Mechanical and Mechatronics Systems Research Labs, Industrial Technology

Research Institute, No. 195, Sec. 4, Chung Hsing Rd., Chutung, Hsinchu,
310401, Taiwan (R.O.C.)

2

Figure 2. The architecture of Dockers.

Docker considers the shared memory architecture to

enhance resource-sharing performance. As shown in

Figure 2, the host has exactly one operating system. The

docker engine runs based on the host operating system,

while the docker applications share low-level resources,

such as the common operating system service and the

hardware instructions. Therefore, the common low-level

resources are shared with docker applications, and only a

few resources are required.

However, the major issue of docker is security [11]

because the low-level resources are shared. Various docker

applications use the same resource to execute different jobs,

so the malicious applications would invalidly access other

applications’ data based on the shared resource architecture.

Thus, access control in docker applications is a critical

research topic [16].

On the other hand, the low-level resources are

independent in the VMs, so the security issues of docker do

not appear in VMs. Therefore, for the security issue, this

work considers the VM to improve the efficiency of

deploying VMs.

To resolve the above optimization issue of VMs, the

dockers [12][13] and Kubernetes [14][15] are proposed to

reduce the duplicated files. The docker architecture is

drawn in Figure 2. The creation process includes three

phases: 1) VM setup, 2) VM creation, and 3) VM

configuration. In the VM setup phase, the specifications of

VMs are determined and sent to VMware vSphere, such as

CPU number, RAM size, and disk space. In the VM

creation, VMware vSphere creates the VMs according to

the received VM specification. After the second phase, the

VMs are duplicated with the specified specification, but the

software configuration is not changed, such as the user

account and password. Therefore, the third phase, the VM

configuration, modifies the configurations.

Figure 3. The flowchart of creating a VM.

From the implementation, the second phase process is

executed by vSphere automatically, while users handle the

first and third phase processes. The variance in the degree

of VM customization increases the manpower requirement.

In other words, creating VMs with various configurations

require more manpower than that with single ones.

Therefore, this work constructs an automatic VM

deployment service, Rapid Virtual Development

Environment (RVDE), to reduce manpower investigation

and increase job efficiency.

From the experiment results, the proposed RVDE

creates the specific VMs correctly. On the other hand, all

VMs are automatically deployed by the proposed RVDE,

so the manpower investigation is decreased. In other words,

the feasibility and the efficiency of the proposed RVDE are

confirmed.

Section II describes the proposed approach RVDE in

the following content of this article to build up specific

VMs. We apply some experiments to evaluate the

efficiency and feasibility of the proposed RVDE, and the

results are discussed in Section III. The conclusion and

future works are illustrated in Section IV.

II. PROPOSED METHOD:

The software architecture of the proposed RVDE

platform is illustrated in Figure 4. The RVDE platform is

built on Windows 10. The major services include Node.js,

WebSocket, Express, and Ansible. Node.js is used to

communicate and integrate the entire service of the

proposed RVDE; WebSocket is used to exchange the data

between the proposed RVDE platform and the VMware,

which includes the VMware REST API and VMware

vSphere; Express is the integrated package for Node.js;

Ansible is used to modify the system configuration of the

target VMs.

3

Figure 4. The service architecture of the proposed

Rapid Virtual Development Environment

platform.

The proposed RVDE platform consists of three

processes: 1) the user provides commands, 2) the RVDE

creates VMs, and 3) the RVDE modifies the system

configurations of the created VMs. The architectures of the

above processes are illustrated in Figure 5, Figure 6, and

Figure 7, respectively. The details of each process are

described in the following.

The user interaction diagram for the communication

between the user command and the service script creation is

drawn in Figure 5. The user on the left-hand side of Figure

5 provides the system configurations of VMs via the user

interface of the RVDE. The RVDE generates the Ansible

playbook by Node.js, and the Ansible playbook is

constructed in the YAML format. Then, the Ansible

playbooks will be delivered to Ansible. Eventually, the

system configurations will be sent to VMware REST API

to do the actions.

Figure 5. The user interaction diagram for the

communication between the user command

and the service script creation.

The details about the actions of the playbook

generations are illustrated in Figure 6. Node.js in the RVDE

consists of two major functions: the WebSocket Server and

Express Server. The WebSocket Server provides the

low-level process of the network access service, while the

Express Server provides the necessary functions for Node.js.

Express Server generates the Ansible playbook in YAML

format, which describes the system configuration of VMs.

Therefore, the actions of VM creation are divided into two

jobs: 1) the VM creation, and 2) the VM modification, and

the jobs are handled by Express Server. On the other hand,

the RVDE invokes VMware REST API to create the VMs.

Since the VM creation process only duplicates the VM by

the specified VMs or VM templates. In other words, the

Express Server sends the VM creation actions to the

VMware REST API and the system configurations to

Ansible.

Figure 6. The architecture of creating the system

configuration script is based on the user’s

command.

The actions between the Express Server in Figure 5

and the VM creation actions are illustrated in Figure 7.

VMware REST API makes the major process of creating

VMs in the VMware vSphere. Since the resources of real

hosts are virtualized by vSphere, all processes are well

monitored under vSphere. After receiving the VM creation

missions, VMware REST API duplicates the VM by the

specified VMs or VM templates. The duplications will be

assigned the resource, and the records will be saved in the

database. All the above VM creation processes are

processed by VMware REST APIs. The creation progress

will be returned, and the user can monitor the current status

of the VM creation.

Figure 7. The architecture of service communication

between the VMware REST API and the

hosts.

III. EXPERIMENTAL ANALYSIS

The usage of the proposed RVDE consists of two sides:

1) the server side, and 2) the client side. The VMs are

created on the server side while the commands are received

from users on the client side. We consider the server farm

with five hosts for the server side, while two workstations

are used to be the client side as shown in Figure 8 and

Figure 9, respectively. The software and hardware

specifications are listed in Table 1 and Table 2 for the

server and client sides, respectively.

On the server side, the host resource is virtualized by

VMware ESXi 6, and 10Gb Ethernet connects the storage

4

and the server farm. All VMs are deployed in the storage

rather than the local storage. The vCenter handles the VM

maintenance on the server side. Therefore, the server farm is

controlled by vCenter because of the virtualization

maintenance, such as the high availability, power balancing,

and load balancing.

Table 1. The hardware and software specification of the

test server farm.

 Specifications

of server 5

CPU (per host)
Intel(R) Xeon(R) CPU E5-2650 v4 @

2.20GHz

RAM 192 GB

Storage
MSA 2050

9 TB

Hypervisor VMware ESXi, 6.0.0

Figure 8. The experiment server farm is used to

evaluate the performance of the proposed

RVDE.

Two Windows-based workstations handle the process

on the client side. The Linux-based platform provides higher

performance with lower hardware resource requirements.

However, the target audience of the RVDE is basic IT

engineers, so the Windows-based platforms are more

friendly than the Linux-based platforms. The specification

of the workstations is similar to the personal computer, but

the workstations provide higher stability and redundancy

than personal computers. Therefore, the workstations are

more appropriate than personal computers.

Table 2. The hardware and software specifications of

the experiment client workstations.

 Specifications

of server 2

CPU (per host)
Intel(R) Core(TM) i5-9500 CPU @

3.00GHz 3.00 GHz

RAM 64 GB

Storage
CT500MX500SSD

500 GB

Figure 9. The experiment client workstations which are

used to access the proposed RVDE and

provide the commands.

In the experiment, we consider two batches with

various IP addresses to evaluate the correctness of VM

creation. The specifications of the two batches are illustrated

in Figure 10 and Figure 11, respectively, while the created

VM results are drawn in Figure 12 and Figure 13. The

VMs’ names and the IP addresses are the major differences

in the two experiments. For convince, we consider two VM

names to identify the VMs. The VMs are connected to the

network when VMs are created, so the IP addresses should

be different.

Figure 10. The VM specification of the first test.

5

Figure 11. The VM specification of the second test.

Figure 12. The result of creating VMs according to the

specification in the first test.

Figure 13. The result of creating VMs according to the

specification in the second test.

Figure 14. The specification of created VM with the

name qwe_2.

The experiment results illustrated in Figure 12 and

Figure 13 are captured by the RVDE logs. The

specifications of all created VMs are the same as that

provided by the user. Therefore, the proposed RVDE

correctly creates the VMs according to the specifications

provided by the user. Moreover, to evaluate the actual

specification, we capture the specification of created VM

named qwe_2 that is detected by vSphere, and the result is

illustrated in Figure 14. The hardware specification of the

VM qwe_2 is the same as that provided by the user,

including the CPU number, memory size, disk space, and IP

address. In other words, the proposed RVDE provides

correct and automatic VM creation.

IV. CONCLUSIONS

In this paper, a rapid VM creation service, which is

named RVDE (Rapid Virtual Development Environment)

is proposed to save manpower to set up the VMs and

configure the systems. To create a large number of

customized VMs, the information and technology engineers

should set up VMs by the specifications and input the VM

specifications to the hypervisor, e.g., VMware vSphere.

Then, the hypervisor creates the VMs according to the VM

specifications. After the VMs are created, the information

and technology engineers have to enter each VM to set up

the system configuration. For example, the user account,

login password, and IP address. The proposed RVDE

decreases the time investigated by the information and

technology engineers. Moreover, the proposed RVDE

provides the batch process, and in other words, the

information and technology engineers only require

preparing the system specification for the RVDE, and the

RVDE will create the VMs automatically. The manpower

is released by the RVDE.

The RVDE could be applied to deploy a large number

of VMs. For example, the education needs to create several

VMs for the implementation topics in a class, and the

RVDE could help in this scenario. Adjusting the scale of

6

cloud service. The high-performance computing needs huge

computing power to finish the jobs. Deploying physical

devices to provide computing power is a straightforward

solution. However, computer power is not always necessary,

and it takes place only when the jobs are coming. When the

jobs arrive, the engineers could use the RVDE to create

VMs rapidly to increase the scale of the computing power.

So, the response time of the cloud service would be reduced

by the RVDE.

The proposed RVDE creates customized VMs rapidly,

but managing the ecosystem of cloud service still needs to

consider more services to increase the service completeness.

For example, the service destroy is a critical service. When

the mission is completed, the VMs should be destroyed to

release the hardware resources. On the other hand, the

system service should be monitored online to guarantee the

performance of each VM. Therefore, in the future, we will

consider the above two issues to increase the completeness

of the RVDE.

ACKNOWLEDGMENTS

This study is supported in part by the National Science

Council of the Republic of China under contract numbers

MOST 109-2221-E-167 -030 -MY3 and NSTC

112-2221-E-167-035 -.

REFERENCES

[1] Yang, C. T., Chen, S. T., Liu, J. C., Liu, R. H., &

Chang, C. L. (2020). On construction of an energy

monitoring service using big data technology for

the smart campus. Cluster Computing, 23,

265-288.

[2] Kristiani, E., Yang, C. T., & Huang, C. Y. (2020).

iSEC: An optimized deep learning model for image

classification on edge computing. IEEE Access, 8,

27267-27276.

[3] Yang, C. T., Chen, Y. A., Chan, Y. W., Lee, C. L.,

Tsan, Y. T., Chan, W. C., & Liu, P. Y. (2020).

Influenza-like illness prediction using a long

short-term memory deep learning model with

multiple open data sources. The Journal of

Supercomputing, 76, 9303-9329.

[4] Kristiani, E., Yang, C. T., Huang, C. Y., Wang, Y.

T., & Ko, P. C. (2021). The implementation of a

cloud-edge computing architecture using

OpenStack and Kubernetes for air quality

monitoring application. Mobile Networks and

Applications, 26, 1070-1092.

[5] Kristiani, E., Yang, C. T., Huang, C. Y., Ko, P. C.,

& Fathoni, H. (2020). On construction of sensors,

edge, and cloud (ISEC) framework for smart

system integration and applications. IEEE Internet

of Things Journal, 8(1), 309-319.

[6] Tsung, C. K., & Tso, Y. A. (2022). Recognizing

Edge-Based Diseases of Vocal Cords by Using

Convolutional Neural Networks. IEEE Access, 10,

120383-120397.

[7] Wu, Q., Xie, N., Zheng, S., & Bernard, A. (2022).

Online order scheduling of multi 3D printing tasks

based on the additive manufacturing cloud platform.

Journal of Manufacturing Systems, 63, 23-34.

[8] Haghnegahdar, L., Joshi, S. S., & Dahotre, N. B.

(2022). From IoT-based cloud manufacturing

approach to intelligent additive manufacturing:

Industrial Internet of Things—An overview. The

International Journal of Advanced Manufacturing

Technology, 1-18.

[9] Ghafari, R., Kabutarkhani, F. H., & Mansouri, N.

(2022). Task scheduling algorithms for energy

optimization in cloud environment: a

comprehensive review. Cluster Computing, 25(2),

1035-1093.

[10] Zhou, D., Xue, X., & Zhou, Z. (2022). SLE2: The

improved social learning evolution model of cloud

manufacturing service ecosystem. IEEE

Transactions on Industrial Informatics, 18(12),

9017-9026.

[11] Patra, M. K., Kumari, A., Sahoo, B., & Turuk, A. K.

(2022, December). Docker Security: Threat Model

and Best Practices to Secure a Docker Container. In

2022 IEEE 2nd International Symposium on

Sustainable Energy, Signal Processing and Cyber

Security (iSSSC) (pp. 1-6). IEEE.

[12] Kim, B. S., Lee, S. H., Lee, Y. R., Park, Y. H., &

Jeong, J. (2022). Design and implementation of

cloud docker application architecture based on

machine learning in container management for

smart manufacturing. Applied Sciences, 12(13),

6737.

[13] Halenárová, L., Halenár, I., & Tanuška, P. (2022,

September). Digital Twin proposal using the

Matlab-Stateflow model and Docker containers. In

2022 Cybernetics & Informatics (K&I) (pp. 1-6).

IEEE.

[14] Liu, J. C., Hsu, C. H., Zhang, J. H., Kristiani, E., &

Yang, C. T. (2023). An event-based data processing

system using Kafka container cluster on Kubernetes

environment. Neural Computing and Applications,

1-18.

[15] Cha, J. H., Jeong, H. G., Han, S. W., Kim, D. C., Oh,

J. H., Hwang, S. H., & Park, B. J. (2023, July).

Development of MLOps Platform Based on Power

Source Analysis for Considering Manufacturing

Environment Changes in Real-Time Processes. In

International Conference on Human-Computer

Interaction (pp. 224-236). Cham: Springer Nature

Switzerland.

[16] Guo, J., Xiao, J., Liu, Z., Cheng, Z., Liu, X., &

Qiang, Y. (2022, July). Security Access Control of

Docker Process Based on Trust. In International

Conference on Artificial Intelligence and Security

(pp. 557-570). Cham: Springer International

Publishing.

7

Chen-Kun Tsung received the

B.Sc. and M.Sc. degrees in

computer science and information

engineering from Dayeh

University, Changhua, Taiwan, in

2004 and 2006, respectively, and

the Ph.D. degree in computer

science and information

engineering from National Chung

Cheng University, Chiayi, Taiwan,

in July 2014. He is an Associate

Professor of Computer Science and

Information Engineering with

National Chin-Yi University of

Technology, Taichung, Taiwan. His

current research interests are in

cloud computing, big data,

Web-based applications, and

combinatorial optimization.

Xin-Ting Zhang received a B.Sc.

degree in Computer Science and

Information Engineering with

National Chin-Yi University of

Technology, Taichung, Taiwan, in

2023. His research interest is Cloud

Computing.

Ming-Cheng Tsai received a

M.Sc. degree in Department of

Mechanical Engineering with

National Taiwan University of

Science and Technology, Taipei,

Taiwan, in 2016. His research

interest is online measurement and

mechanical design.

Chih-Wei Wu received a M.Sc.

degree in Introduction of

Department of Mechanical and

Electro-Mechanical Engineering

with National Sun Yat-sen

University, Kaohsiung, Taiwan, in

2007. His research interest is

six-bar human-like robotic.

