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ABSTRACT 

The global spread of COVID-19 and influenza over 

the past few years has made it necessary for first-line 

clinicians to mark out definite areas of the lungs when 

making diagnoses on radiographs. In this study, we 

propose a new method to determine the exact location of 

the lungs in radiographic images, preserving only the mask 

of this region to generate the ROI region needed by 

physicians to assist in diagnosis. Our algorithm consists of 

three stages, i.e., Depthwise Separable Convolution, 

Attention Enhancing Block, and Asymmetric autoencoder. 

Depthwise Separable Convolution can capture the X-ray 

image with limited computational resources. The Attention 

Enhancing Block is used to extract the X-ray image 

features from the three different receptive fields and the 

fused features are then reduced by the decoder. The 

Asymmetric autoencoder model is more focused on 

learning and preserving the precise details of the ROI 

region masks. We tested our method using lung 

radiographs collected from the Kaohsiung Medical 

University (KMU) database, and the simulation results 

showed that, on the one hand, our proposed method has a 

better Dice coefficient compared to other segmentation 

methods; on the other hand, it is able to locate the precise 

image segmentation of the lung ROI region needed for 

clinicians' diagnosis. The proposed method can accurately 

localize the precise image segmentation of the lung ROI 

region needed for clinician diagnosis.  

Keywords: lung, radiograph, ROI region, segmentation, 

computer-aided diagnosis 

I. INTRODUCTION 

In recent years, due to global pandemics of infectious 

diseases such as COVID-19 [1][2] and influenza [3], 

clinicians have been faced with additional challenges when 

dealing with the radiographic diagnosis of their patients. 

Imaging has become an indispensable tool in the 

management of these diseases, and radiographs are often 

one of the most common modalities used. 

X-rays provide detailed images of the structure of the 

lungs, which are essential for diagnosing symptoms of 

respiratory diseases and infections. However, because of 

the severity and spread of these diseases, doctors need to 

identify problem areas in a patient's lungs more quickly and 

precisely. 

In this context, machine learning and artificial 

intelligence technologies have entered the realm of clinical 

diagnosis [4]. With these advanced technologies, doctors 

can more easily mark and localize defined areas of the 

lungs. Machine learning algorithms are able to recognize 

specific structures and lesions in the image, helping doctors 

to mark potential areas of disease on the image. 

This intelligent labeling system helps improve the 

speed and accuracy of diagnosis, especially during a 

pandemic when healthcare resources are under pressure. 

With this technology, clinicians can more effectively 

identify possible lesions and quickly implement appropriate 

treatment measures to ensure timely and effective patient 

care. 

Overall, the application of machine learning and 

artificial intelligence to clinical X-ray diagnosis provides 

healthcare professionals with a powerful tool to help meet 

the challenges posed by the global infectious disease 

epidemic. 

Therefore, this study proposes a new method that 

incorporates deep learning to label the precise location of 

the lungs in radiograph images, to accurately segment the 

lungs and label the ROI regions before further assisting 

clinicians in computer-aided diagnosis. 

II. BACKGROUNDAND MOTIVATION 

Recently, deep convolutional neural network (DCNN) 
based approaches have demonstrated significant potential 

in various medical diagnostic domains, prompting further 

exploration in applied research [5]. The utilization of 

DCNN holds promise for diminishing the reliance on 

costly computed tomography (CT) and magnetic 

resonance imaging (MRI) scans. Its automated and precise 

outcomes alleviate the urgency for clinicians to promptly 

identify symptoms, thereby reducing their workload. 
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Nonetheless, the applicability and effectiveness of DCNN 

in the detection of lung regions pose challenges.  

To the best of our understanding, conventional 

DCNN-based techniques, including U-Net [6] and 

DenseNet [7], are employed for segmenting lung regions. 

However, the identification of lung regions using DCNN 

encounters difficulties due to subtle variations in the 

grayscale distribution of these regions in radiographic 

images. These features may fade away following a series of 

convolution operations as the network delves deeper into 

the layers. 

III. PROPOSED METHOD 

The goal of this study is to be able to segment the 

X-ray images of the lungs and separate the unnecessary 

organs. A modified Auto-Encoder is used in the 

segmentation stage to process the input of lung images [8]. 

The goal of this stage is to generate a mask that preserves 

only the lung region from the original image. 

Figure 1 shows the deep learning architecture proposed 

in this study, which mainly consists of encoder, middle 

layer and decoder. These elements are the key components 

of the Convolutional Autoencoder model and they work 

together synergistically to realize the image segmentation 

task. 

 

 

Figure 1. Structure of Autoencoder 

Autoencoder is composed of an encoder and a decoder, 

and in the process of encoding and decoding, the key to 

connecting encoding and decoding is to obtain the potential 

representation of the data. The goal of training techniques 

for self-supervised learning of autoencoders is to make the 

input equal to the output, but in practice the input will not 

be exactly equal to the output, instead the input will be 

approximated by the output, in which case it is necessary to 

define a reconstruction loss to characterize the difference 

between the input and the output. The encoder transforms 

the input image into a compressed representation, the 

compressed features are intensively computed in the 

middle layer, and the decoder restores the details to the 

original image. The encoder in this study differs from the 

original autoencoder in that it uses a deeply separable 

convolution technique [9-11] to reduce the computational 

cost. The Encoder compresses the image into a 

low-dimensional representation and then restores it. The 

use of depth-separable convolution is suitable for capturing 

lung details in radiograph images with limited computing 

resources, in addition, we use an attention mechanism in 

the middle layer to allow the model to focus on the lung 

edge details to increase the accuracy of the segmentation. 

 

Depthwise Separable Convolution 

Depthwise Separable Convolution is an efficient 

convolution operation that is widely used in deep learning 

to reduce the computational burden and the number of 

parameters of the model while maintaining a considerable 

performance. This convolution operation consists of two 

main steps: Depthwise Convolution and Pointwise 

Convolution. Before exploring Depthwise Convolution, it 

is important to explain how it differs from traditional 

convolution. Conventional convolution operations usually 

apply multiple convolution kernels on the input feature 

map, where each convolution kernel spans all input 

channels, as shown in Figure 2. For example, if we have a 

feature map with dimensions H × W × D (where H is the 

height, W is the width, and D is the number of channels), 

and we use one K × K × D convolution kernel to perform 

the convolution operation, each convolution kernel will 

cover all the K × K spatial locations on the D channels. If 

we use M such convolution kernels, the final output will be 

a new feature map of H' × W' × M, where H' and W' are the 

spatial dimensions of the new feature map. 

 

 

Figure 2. Example of Conventional Convolution 

Operation 

Depthwise Convolution is divided into two steps. 

1. Depthwise Convolution 

First, a K×K×1 convolution kernel is applied to each 

input channel independently. For each channel, the 

convolution is performed only within the channel, and the 

information is not fused across the channels. This step 

greatly reduces the computational effort because it involves 

the convolution of each channel independently instead of 

using one large convolution kernel to cover all channels. 

2. Pointwise Convolution 

Next, the output of the depth convolution is convolved 

using a 1×1×D convolution kernel, a process also known 
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as pointwise convolution. The purpose of pointwise 

convolution is to combine and recalibrate the output 

channels of the depth convolution. In this step, each 1×1 

convolution kernel spans all the D channels but operates at 

only one point in space, thus combining the information of 

each channel obtained from the depth convolution. 

The efficiency and lightweight nature of Depthwise 

Separable Convolution represent its notable advantages. In 

terms of computational efficiency, it significantly reduces 

the required number of multiplication operations. This is 

illustrated in Figure 3 through a straightforward example. 

Consider a conventional 3 × 3 × 3 convolution kernel, 

which involves 27 multiplication operations on a single 

channel. In contrast, the depth convolution reduces this to 9 

operations. Assuming there are 3 channels, the total 

number of depth convolution operations remains 27. With 

3 such convolution kernels, the total number of pointwise 

convolution operations becomes 9, resulting in a total of 36 

convolution operations. In comparison, a conventional 

convolution operation would entail 27 times the number of 

channels. Therefore, when the number of channels exceeds 

1, Depthwise Separable Convolution achieves significant 

computational savings.  

The reduction in the number of operations is attributed 

to the separate handling of spatial and depth-wise 

convolutions in Depthwise Separable Convolution, leading 

to a more efficient computation process. This not only 

streamlines the computational load but also enhances the 

overall efficiency of the model, particularly in scenarios 

involving multiple channels. 

 

 

 

Figure 3. Example of Depth Separable Convolution  

 

Attention Enhancing Block 

In this study, the depth separable convolution is used 

because of the specially designed attention-enhancing 

block in the middle layer as shown in Figure 4. In order to 

avoid the high computational cost caused by the Attention 

Enhancement Block, the depth separable convolution is 

used in the encoder and decoder to balance the 

computational cost. 

 

 

 

Figure 4. Structure of Attention Enhancement Block 

The attention enhancement block in our proposed 

model primarily employs Resnet 34 [12-13] for multi-scale 

feature extraction in the intermediate layers. Resnet 34, 

being a lightweight pre-trained residual network, proves 

efficient in extracting features from intermediate layers. 

This efficiency is attributed to the residual structure, which 

mitigates the issue of gradient vanishing. By overcoming 

this challenge, the model can be deepened, enabling the 

extraction of feature layers with an increased number of 

layers. Utilizing Resnet 34 enhances the model's capability 

to efficiently capture features at different scales, 

contributing to the overall effectiveness of the attention 

enhancement block. The pre-trained nature of Resnet 34 

further facilitates the extraction of meaningful features from 

intermediate layers, as it has been optimized for feature 

representation in various tasks. This allows our proposed 

model to leverage the advantages of a well-established 

architecture, resulting in improved feature extraction and 

representation. In summary, the attention enhancement 

block benefits from the implementation of Resnet 34, 

providing a robust mechanism for multi-scale feature 

extraction in the middle layers. This choice ensures the 

model's ability to overcome gradient vanishing issues, 

allowing for increased depth in the layers of extracted 

features and, consequently, more effective feature 

extraction. 

Utilizing Resnet 34 for the extraction of features from 

three distinct receptive fields, we conduct a multi-scale 

combination at the conclusion of the process [14-15]. It is 

noteworthy that, in this context, multi-scale does not imply 

variations in size; rather, it pertains to the uniformity in size 

and dimensions of the extracted feature maps. These 

feature maps can be directly summed across different 

sensory fields. The amalgamated features are then directed 

towards the subsequent decoder reduction. 

The primary rationale behind opting for Resnet34 for 

feature extraction preceding multiscale fusion lies in its 

ability to delineate an approximate contour of the lungs 

through the advanced features' residual structure. This 

characteristic contributes to an enhanced segmentation 

performance of the model. Additionally, Resnet34 is 

selected for its lightweight nature among residual models, 

which proves beneficial in scenarios where computational 
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costs need to be constrained. This study acknowledges the 

significance of multiscale fusion in achieving a holistic 

understanding of lung features, and Resnet34's efficiency 

becomes pivotal in the process. By employing a model that 

can effectively discern the contour of lungs and provide 

rich feature representations, we aim to enhance the overall 

performance of the segmentation model. The choice of 

Resnet34 aligns with a balanced consideration of 

segmentation accuracy and computational efficiency 

within the given constraints. 

 

Asymmetric autoencoder 

Converting a traditional symmetric autoencoder to an 

asymmetric autoencoder brings significant advantages for 

specific tasks, such as image segmentation [16-18]. First, 

asymmetric autoencoders perform well in mask generation. 

This structure allows the model to focus more on learning 

and preserving the exact details of the mask, especially 

critical since in image cutting we need to accurately capture 

the contours and details of the object. The optimized 

structure of the decoder helps to generate more accurate 

masks, improving the quality of the cutting result and 

making it particularly suitable for applications that require a 

high degree of precision. 

Transforming a conventional symmetric autoencoder 

into an asymmetric autoencoder yields notable advantages, 

particularly in specialized tasks like image segmentation 

[16-18]. The distinctive feature of asymmetric 

autoencoders shines in mask generation. This architecture 

empowers the model to prioritize the acquisition and 

preservation of intricate details within the mask. This 

emphasis on precision is crucial, especially in image 

segmentation tasks where capturing accurate contours and 

intricate object details is paramount. 

The optimized design of the asymmetric autoencoder's 

decoder plays a pivotal role in generating more precise 

masks. This enhancement translates into improved cutting 

results, elevating the overall quality of the process. As a 

consequence, this model configuration proves especially 

well-suited for applications demanding a high level of 

precision. The emphasis on learning and preserving 

intricate details ensures that the model excels in tasks 

requiring nuanced and accurate representations, making it a 

valuable tool in image cutting scenarios and similar 

applications. 

Furthermore, the asymmetric autoencoder proves to be 

an efficient solution for conserving computational and 

memory resources, particularly advantageous when dealing 

with extensive image datasets or operating in 

resource-constrained settings. The simplification of the 

decoder contributes to a significant reduction in model 

complexity without compromising performance efficiency. 

This streamlined architecture positions asymmetric 

autoencoders as an ideal choice for handling substantial 

image data, delivering exceptional results even within the 

constraints of limited computing resources. 

 

 

 

Dilation and Erosion 

Dilation and Erosion are two basic operations in 

Mathematical Morphology, commonly used in image 

processing and computer vision.  

Dilation is an operation performed on an image, 

usually using a structure element to enlarge or magnify a 

specific area of the image. For each element in a structure 

element, the corresponding area of the image is set to white, 

and if one of the elements in the structure element matches 

an element in the image, that area is marked white.Dilation 

can emphasize or enlarge bright areas of an image, connect 

adjacent white areas, and fill in gaps.  

Erosion is an operation on an image that also uses a 

structure element, but it shrinks or erodes specific areas. For 

each element in the structure element, the corresponding 

area in the image is set to white, and the area is marked 

white only if all elements in the structure element match 

those in the image.Erosion shrinks the white areas of the 

image, separates neighboring areas, and removes small 

contiguous areas. 

Figure 5 shows an example of Dilation and Erosion 

operating on an image. 

 

 

 

 

Figure 5. Examples of Dilation and Erosion. 

IV. EXPERIMENTAND ANALYSIS 

The experimental results of this study are mainly 

compared with Dice coefficient, which is a statistical index 

used to measure the similarity between two sets and is 

usually used in the fields of image segmentation, natural 

language processing and data mining. Dice coefficient can 

evaluate the degree of overlap between two sets, and its 

value ranges from 0 to 1. The closer the value is to 1, the 

greater the overlap between two sets and the higher the 

similarity. 

 

Dice(A,B) = (2 * |A ∩ B|) / (|A| + |B|),   (1) 
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Figure 6 shows the images used for experimental 

segmentation. In this study, lung X-rays with imaging data 

collected from Kaohsiung Medical University (KMU) 

database were used to test our method. Deep Convolutional 

Neural Network U-net [6] and ResNet [7] were used for 

comparison. 

 

Figure 6. Experimental image for segmentation 

 

Using different number of decoders, a comparison of 

our method with U-net and ResNet for lung radiographs 

after segmentation is presented in Figure 7. 

 

 
 4 layers in total 3 layers in total 2 layers in total 1 layers in total 

Unet 

    

Resnet 

    

Ours 

    

  

Figure 7. A comparison of our method with U-net and 

ResNet for lung radiographs. 

 

Table 1 shows the comparison of our method with 

U-net and ResNet in terms of the number of parameters for 

lung X-ray radiographs segmentation using different 

number of decoders. 

 

 

 

Table 1. The comparison of our method with U-net and 

ResNet in terms of the number of 

parameters for lung X-ray radiographs 

segmentation 

 
4 layers in 

total 

3 layers in 

total 

2 layers in 

total 

1 layers in 

total 

Unet 21.2M 20M 19.4M 19.2M 

Resnet 8.0M 7.0M 6.3M  5.7M 

Ours 25.5M 24.6M 24.3M  24.2M  

 

Table 2 shows the Dice coefficients of our method 

compared with U-net and ResNet for lung X-ray 

radiographs segmentation using different number of 

decoders. 

 

Table 2 shows the Dice coefficients of our method 

compared with U-net and ResNet 

 
4 layers in 

total 

3 layers in 

total 

2 layers in 

total 

1 layers in 

total 

Unet 0.9102 0.9248 0.9007 0.9235 

Resnet 0.9641 0.9581 0.9582 0.9467 

Ours 0.9654 0.9656 0.9625 0.9603 

 

Ablation studies of the asymmetric self-coders 

performed in this study are presented in Tables 1 and 2. 

The outcomes of these experiments indicate that a 

reduction in computational cost and alleviation of 

over-simulation can be attained by employing fewer 

decoders to formulate the self-coder while maintaining a 

constant number of encoders. Throughout the conducted 

experiments, our approach effectively identifies the optimal 

number of decoders by systematically adjusting the count 

of decoders, demonstrating its adaptability to find the most 

suitable configuration. The results underscore the 

significance of this approach in achieving a balance 

between computational efficiency and model performance, 

providing valuable insights into the strategic utilization of 

decoders within the self-coding architecture. This 

experimental exploration contributes valuable findings to 

the broader understanding of self-coding mechanisms and 

their parameter configurations, opening avenues for 

enhanced efficiency in various applications leveraging 

self-coding architectures. 

As depicted in the table, the optimal Dice coefficient 

value for the segmented image is 0.9656. Consequently, 

employing an extensive number of decoders tends to 

overly emphasize details in lung X-rays, leading to 

substantial noise in the output mask. Conversely, a sparse 

number of decoders results in subpar image recovery due 
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to insufficient detailing. Striking a balance by utilizing an 

appropriate number of decoders yields a mask that closely 

aligns with the lung contours. This highlights the positive 

impact of adjusting the decoder count, evident in both the 

quantitative data and the quality of the output image. The 

findings underscore the importance of optimizing the 

decoder count to achieve a harmonious trade-off between 

detailed feature representation and noise reduction in the 

segmented lung images. 

Table 3 Comparison of post-processing 

 Unprocessed 

X-ray images 

X-ray images 

processed by 

median filter 

X-ray images 

processed by 

Dilation and 

Erosion  

Sample 1 

   

Dice  0.9385 0.9404 0.9661 

Sample 2 

   

Dice  0.9112 0.9133 0.9473 

 

Following the precise segmentation of the lungs, 

post-processing steps involve the application of Dilation 

and Erosion to eliminate extraneous noise. Two lung 

X-rays are subjected to testing, as outlined in Table 3, with 

the addition of a median filter for reference purposes. An 

examination of the results in Table 3 reveals that the 

median filter is primarily adept at addressing irregularities 

along the lung periphery but exhibits limited efficacy in 

handling extensive noise during post-processing. 

Conversely, Dilation and Erosion prove more effective in 

mitigating ambient noise, showcasing superior results in 

terms of the Dice coefficient. These morphological 

operations not only outperform the median filter in noise 

reduction but also contribute to refining the segmentation 

output, highlighting their utility in enhancing the accuracy 

of lung image analysis. The comparative evaluation 

underscores the significance of selecting appropriate 

post-processing techniques tailored to the specific 

characteristics of lung X-rays for optimal segmentation 

outcomes. 

 

 

V. CONCLUSIONS 

The widespread occurrence of COVID-19 and 

influenza globally in recent years has underscored the 

importance for frontline clinicians to precisely identify 

specific lung regions when diagnosing radiographs. In this 

study, we introduce a novel methodology aimed at 

accurately delineating the precise location of lungs within 

radiographic images. This approach selectively retains only 

the mask corresponding to the lung region, thereby creating 

a Region of Interest that proves invaluable for physicians in 

aiding their diagnostic processes. The proposed method 

enhances the efficiency and accuracy of diagnostic 

evaluations by providing clinicians with a focused and 

clearly defined area for examination within radiographic 

images. 

Our algorithm is structured into three key stages: 

Depthwise Separable Convolution, Attention Enhancing 

Block, and Asymmetric Autoencoder. The Depthwise 

Separable Convolution adeptly captures X-ray images with 

constrained computational resources. The Attention 

Enhancing Block plays a pivotal role in extracting features 

from the X-ray image by utilizing three distinct receptive 

fields. The resulting fused features are subsequently 

condensed by the decoder. The Asymmetric Autoencoder 

model places particular emphasis on the acquisition and 

preservation of intricate details within the masks of the 

Region of Interest. This three-stage approach optimally 

balances computational efficiency, feature extraction, and 

detailed preservation to contribute to the effectiveness of 

our algorithm in the context of X-ray image analysis. 

Our method underwent testing using lung radiographs 

sourced from the Kaohsiung Medical University database. 

The simulation results demonstrate the superior 

performance of our proposed method, showcasing a higher 

Dice coefficient compared to alternative segmentation 

methods. Additionally, our method excels in precisely 

locating the image segmentation of the lung Region of 

Interest, a critical requirement for clinicians' accurate 

diagnosis. The efficacy of our proposed method lies in its 

ability to not only achieve superior segmentation results but 

also accurately pinpoint the specific lung ROI, enhancing 

its utility in medical diagnostics. 
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