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ABSTRACT 

In this study, we demonstrate a simplified framework 

to reduce the coefficient optimization tasks, and the 

outcome is better than the conventional method. The 

deep-learning-based dehazing algorithms have recently 

been the most common architecture in developing 

dehazing algorithms, resulting in many end-to-end 

dehazing algorithms. However, flexibility is a problem as 

the effectiveness of the deep-learning-based methods 

usually falls short in dealing with the thick haze. Moreover, 

these methods are built without a configurable framework 

to adapt to the issue. A configurable framework usually 

involves a coefficient to adjust the performance; however, 

choosing a suitable coefficient is generally annoying. To 

address this, we propose and evaluate several coefficient 

optimization methods for dehazing algorithms, including 

an optimization method based on contrastive learning. Our 

method can overcome the inconvenience, improve 

performance, and eventually extend the application of 

dehazing algorithms. Our approach is proven superior to 

the extant method through well-controlled experiments, 

guaranteeing flexible usage and better performance of the 

configurable dehazing algorithm. 

Keywords: Haze, Dehaze, Haze Removal, Coefficient 

Optimization, Self-adaptive Coefficient, Contrastive 

Learning 

I. INTRODUCTION 

Dehazing algorithms aimed to restore the actual scene 

from hazy images. Conventionally, these algorithms deal 

with the contrast and saturation degradation caused by 

scattering, such as the dark channel prior (DCP) [1], 

boundary constraint and contextual regularization [2], and 

non-local image dehazing [3]. However, the goal has been 

changed recently since more dehazing algorithms 

emphasized restoration accuracy. For example, the color 

attenuation prior [4], AOD-Net [5], gated fusion network 

[6], multi-scale boosted Dehazing network [7], and joint 

contrast enhancement and exposure fusion [8]. 

Contemporary dehazing algorithms adopted machine 

learning or deep learning frameworks, and increasing haze 

datasets have made deep-learning-based algorithms 

powerful, resulting in better restoration accuracy and 

convenience [9]. 

On the other hand, instead of estimating the 

transmission, the end-to-end framework became 

mainstream when developing dehazing algorithms, thanks 

to the popularization of deep learning algorithms. The 

end-to-end framework meant that research did not estimate 

the transmission map like that in [1]-[5]; they generated 

dehazed images from hazy images directly. The 

widely-used end-to-end algorithms included the deep 

residual network (ResNet) [10], ResNeXt [11], 

densely-connected network (DenseNet) [12], FFA-Net 

[13], and transformer network [14]. These networks' 

architecture differed; for example, ResNet included a 

mechanism re-considering the filtered information 

discarded by previous layers, DenseNet emphasized 

connections inside the model, and the transformer was 

attention-oriented. These networks were beneficial in 

restoration accuracy; however, emphasis on restoration 

accuracy sometimes resulted in the need for more 

enhancement ability and was adverse to enhancing images 

captured in exceptional cases.  

Natural environments were complex to the extent that 

people had no choice but to acquire images under harsh 

environments. The common issues were the thick haze, 

underwater environments, low natural illumination, and 

high artificial light sources. These issues caused effects 

similar to the haze due to scattering; therefore, dehazing 

algorithms with slight changes were still considered 

standard tools to eliminate the haze-like effects. 

Unfortunately, deep-learning-based dehazing algorithms 

had no contingency to adapt to the small changes because 

they adopted the end-to-end framework; therefore, owing 

to different ontologies, they usually fell short in dealing 

with various cases. In other words, a re-training was 

necessary, not only taking additional time and energy but 

also inconvenience. Therefore, specific methods aiming at 

different issues were proposed, such as algorithms for the 

thick haze [15][16], the underwater image [17][18], the 

low-visibility image captured in low light environments [19] 

or at nighttime [20][21]. Nevertheless, the core technology 

of these methods was usually highly correlated to that of 

dehazing algorithms. 
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As discussed previously, Liu et al. reported that 

deep-learning-based dehazing algorithms were usually 

weak when dealing with the thick haze. To overcome the 

issues, Liu et al. proposed a configurable dehazing 

algorithm [22] based on the fact that any dehazing 

algorithm involved a tradeoff between brightness and 

contrast; therefore, any configuration made to a dehazing 

algorithm tending to boost contrast inevitably resulted in 

brightness degradation. Accordingly, using a unique 

coefficient, their dehazing algorithm looked forward to a 

favorable tradeoff between brightness and contrast. New 

research adopted the concept to implement a two-step 

enhancement to brightness and contrast [19][18]. 

According to the author's report, the coefficient was proven 

stable and highly associated with the quality of the dehazed 

image; thereby, the performance of the new dehazing 

method outperformed state-of-the-art dehazing algorithms 

in the experiment. Meanwhile, the coefficient also 

improved the flexibility to extend the application of 

dehazing algorithms and was worthy of further study; for 

example, the coefficient still needed to be completely 

self-adaptive. We figured out that training a 

coefficient-optimization model in the conventional 

deep-learning framework was time-consuming because of 

the need for an optimal coefficient dataset; this means 

researchers have to try every possible coefficient to obtain 

the best one. Therefore, this study aims to simplify the 

training process, shortening the time of developing an 

automatic coefficient generator, improving performance 

and convenience, and eventually extending the application 

of the dehazing algorithm.  

We use three methods to optimize a configurable 

dehazing framework proposed in [19] to achieve our goals. 

In this framework, manipulation of a coefficient can 

directly affect the contrast and brightness of the dehazed 

image. To exert the advantage, we proposed a polynomial 

fitting model (PFM), ResNet network (RNet), and ResNet 

model based on contrastive regularization term (CLNet) to 

optimize the coefficient. The three methods use different 

training strategies, and the advantages differ. 

Corresponding experimental results show that CLNet 

improves the restoration accuracy compared to the origin 

algorithms, which use a fixed coefficient. On the other 

hand, CLNET also reduces the complexity of the training 

process because computing the best coefficients is 

unnecessary in CLNET's training framework. 

II. RELATED WORKS 

A. Dark Channel Prior 

Based on the linear atmospheric model obeying 

Koschmieder's Law [1], an equation involves the hazy 

image 𝐼, transmission 𝑡, global atmospheric light 𝐴, and 

dehazed image 𝐽 is written as: 

𝐼 = 𝐽𝑡 + 𝐴(1 − 𝑡), (1) 

This equation contains three unknown variables, making 

the widely used dehazing model indeterminate. Generally, 

the global atmospheric light is estimated individually from 

the hazy image; thus, when both sides of (1) are divided by 

𝐴, generating a normalized-form equation, and the result is 

as follows: 

𝐼 = 𝐽𝑡 + (1 − 𝑡), (2) 

where the hat symbol indicates a variable divided by the 

global atmospheric light. After using the minimal operator 

concerning three RGB color channels and a small patch in 

each image, (2) can be rewritten as follows: 

𝐼𝑚𝑖𝑛 = 𝐽𝑚𝑖𝑛𝑡 + (1 − 𝑡), (3) 

where 𝐼𝑚𝑖𝑛  and 𝐽𝑚𝑖𝑛 respectively denote dark channels 

of 𝐼 and 𝐽. The dark channel prior (DCP) proposed in [1] 

is a theory assuming that the darkest response among the 

RGB color channel in any clear images' small region is 

close to zero. Applying the DCP assumption to (3) makes 

𝐽𝑚𝑖𝑛 equal to zero, so we obtain the following: 

�̃� = 1 − 𝐼𝑚𝑖𝑛 , (4) 

where �̃�  is an initial transmission estimate awaiting a 

refinement process to compensate for the distinct edge 

caused by the minimal operator concerning a small patch. 

The refinement process is essential because the distinct 

edge between the hazy image and transmission produces 

unnatural artifacts in the dehazed image. Therefore, the 

estimated transmission is obtained using the following: 

�̃�𝑟 = 1 − 𝐼𝑚𝑖𝑛
𝑟 , (5) 

where �̃�𝑟  is the estimated transmission, and 𝐼𝑚𝑖𝑛
𝑟  

denotes the refined dark channel. In the DCP framework, 

we can obtain the dehazed image by substituting the 

estimated transmission �̃�𝑟  for the transmission 𝑡 

demonstrated in (1). 

B. Configurable Dehazing Algorithm 

Liu et al. report that refinement processes significantly 

correlate to saturation, brightness, and contrast quality [22]. 

Therefore, they propose a new energy function associated 

with saturation and contrast in this study, and the energy 

term is written as follows: 

𝑎𝑟𝑔 𝑚𝑎𝑥
𝐼𝑚𝑖𝑛

𝑟
 𝛿(𝐼𝑚𝑖𝑛

𝑟 − 𝐼𝑚𝑖𝑛)
2

+ (𝛻 𝑙𝑛 𝐼𝑚𝑖𝑛
𝑟 − 𝛻 𝑙𝑛 𝐼𝑚𝑖𝑛)2 

(6) 

where 𝛿  represents an ideal monotonically decreasing 

function ensuring the maximal input results in the zero 

output. The first and second terms in (6) are called 

luminance and contrast terms associated with the 

brightness (or saturation) and contrast of the dehazed image, 

respectively. Accordingly, they propose a prototype 

dehazing algorithm to improve the contrast of the dehazed 

image and suggest using an 𝐼𝑚𝑖𝑛
𝑟  obtained by subtracting 

the high-frequency component from 𝐼𝑚𝑖𝑛  to maximize 

the contrast term. 

The idea is used in the latest research aiming at 

improving visibility [19], and the author uses a two-step 

method to enhance the brightness and contrast at each step, 

resulting in bright and contrasting results. In this framework, 

the dehazing algorithm used at each step is defined as 

follows: 
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𝑃𝑑𝑐 = 𝑙𝑛 𝐼𝑚𝑖𝑛 − 𝛼|𝐿ℎ|, (7) 

where 𝑃𝑑𝑐  is an un-refined dark channel associated with 

the estimated transmission, 𝛼 is a coefficient, and 𝐿ℎ is a 

high-frequency component defined as follows: 

𝐿ℎ = 𝑙𝑛 𝐼𝑚𝑖𝑛 − 𝜑(𝑙𝑛 𝐼𝑚𝑖𝑛), (8) 

where 𝜑 is a smoothing algorithm based on the guided 

image filter [23]. Afterward, they obtain 𝐼𝑚𝑖𝑛
𝑟  by refining 

𝑃𝑑𝑐  using 𝜑 and use 𝐼𝑚𝑖𝑛
𝑟  to compute the estimated 

transmission. Accordingly, the estimated transmission 

allows the calculation of the dehazed image according to (5) 

and (2). Except for producing the dehazed image, note that 

this step results in a relation as follows: 

𝑙𝑛 𝐼𝑚𝑖𝑛
𝑟 ∝ 𝑃𝑑𝑐 = 𝑙𝑛 𝐼𝑚𝑖𝑛 − 𝛼|𝐿ℎ|. (9) 

Combining (9) and (6), the brightness term can be rewritten 

as follows: 

𝐼𝑚𝑖𝑛
𝑟 − 𝐼𝑚𝑖𝑛 ∝ 𝛼|𝐿ℎ|. (10) 

Therefore, 𝛼  is proportional to the brightness of the 

dehazed image. On the other hand, the contrast term can be 

rewritten as follows: 

𝛻 𝑙𝑛 𝐼𝑚𝑖𝑛
𝑟 − 𝛻 𝑙𝑛 𝐼𝑚𝑖𝑛 ≈ 𝛼|𝐿ℎ|. (11) 

As a result, 𝛼  is proportional to the contrast of the 

dehazed image. The dehazing algorithm is interesting and 

unique because it generates the dehazed image wherein 𝛼 

controls the brightness and contrast. 

C. Derivations Associated with Brightness 

Replacing the minima operator with the maxima 

operator in (3) and deriving a formula associated with �̃�𝑟 

generates the following: 

�̃�𝑟 =
1 − 𝐼𝑚𝑎𝑥

1 − 𝐽𝑚𝑎𝑥

=
𝑆𝐼

𝑆𝐽

, 

(12) 

where 𝑆𝐼  and 𝑆𝐽  respectively denotes the negative 

image of 𝐼𝑚𝑎𝑥 and 𝐽𝑚𝑎𝑥. Note that 𝐼𝑚𝑎𝑥  is the value 

channel of HSV color space, thereby representing 

brightness of 𝐼 . Accordingly, a relation between 

transmission and brightness can be written as follows: 

𝑆𝐽 = 𝑆𝐼 �̃�𝑟⁄ . (13) 

The above equation results in the following: 

𝜇𝑔,𝑆�̂�
= 𝜇𝑔,𝑆�̂�

𝜇𝑔,𝑡𝑟⁄ , (14) 

where 𝜇𝑔,𝑆�̂�
, 𝜇𝑔,𝑆�̂�

, and 𝜇𝑔,𝑡  respectively denote the 

geometric means of 𝑆𝐽, 𝑆𝐼, and 𝑡. The equation helps 

derive our approaches, indicating that the brightness of a 

hazy image and the estimated transmission ensure the 

dehazed image’s brightness. For convenience, we call (14) 

the brightness function. 

III. THE PROPOSED METHOD 

In this study, we derive and discuss several feasible 

approaches to automatically generate the optimal 

coefficient 𝛼 based on the information within the input 

image. We use a dehazing algorithm proposed in [19] 

rather than that offered in [22] owing to the better 

performance. 

A. Polynomial Fitting Model 

Liu et al. mention a simple coefficient-optimizing 

method based on polynomial fitting [22]. They compiled 

statistics on images in the synthetic objective testing set 

(SOTS) [9]. They found a solid correlation: the arithmetic 

means linearly correlated to the initial and estimated 

transmission with a correlation coefficient >0.98. Thus, 

they concluded that this should result from the coefficient. 

Accordingly, they conducted an advanced experiment and 

found that the estimated transmission was exponentially 

proportional to the coefficient 𝛼 . Accordingly, they 

conducted another experiment and found that the estimated 

transmission was exponentially proportional to the 

coefficient 𝛼. Hence, they suggested using the correlation 

as follows: 

𝜇𝑔,𝑡𝑟 ≈ ∑ ∑ 𝑐𝑝𝛼𝑛𝜇𝑔,𝑡
𝑚

3

𝑛=0

1

𝑚=0

, 

(15) 

where 𝑐𝑝 indicates a serial constant; 𝜇𝑔,𝑡𝑟 and 𝜇𝑔,𝑡 are 

the geometric means of �̃�𝑟 and �̃�, respectively; 𝑚 and 

𝑛 are two parameters respectively denoting the order of 𝛼 

and 𝜇𝑔,𝑡. This model helps choose an optimal coefficient 

to generate the quality dehazed image from the initial 

transmission 𝜇𝑔,𝑡, which can be computed from the hazy 

image. After repeated tests, we find that the higher order 

terms of 𝛼 appear not helpful to overall performance for 

the dehazing image; thus, we use a correlation 

demonstrated as follows: 

𝜇𝑔,𝑡𝑟 ≈ ∑ ∑ 𝑐𝑝𝛼𝑛𝜇𝑔,𝑡
𝑚

1

𝑛=0

1

𝑚=0

. 

(16) 

Fig. 1(a) illustrates the flowchart of fitting our 

polynomial fitting model (PFM) architecture. Red lines 

 

(a) 

Figure 1. The PFM architecture includes two steps. In the 

training step (red lines), the polynomial fitting model 

attempts to fit the mean refined transmission to the mean 

initial transmission and coefficients. After that, with the 

brightness chosen empirically, we compute the mean 

empirical transmission based on the brightness function. 

In the reference step, the optimal coefficient of the 

dehazing algorithm can be solved by inputting the initial 

transmission and empirical brightness to the polynomial 

fitting model. 
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denote steps associated with the training phase, and the blue 

lines indicate the reference steps. Accordingly, once the 

optimal brightness of the dehazed image is chosen, the 

corresponding 𝜇𝑔,𝑡𝑟  can be obtained according to the 

brightness function. Afterward, an optimal 𝛼  can be 

calculated by solving (16). We give 𝜇𝑔,𝑆�̂�
 a fixed value of 

0.45, as the author's suggestion in [22]; for your reference, 

the optimal brightness comes from the statistics proposed in 

[23]. Note that a compromise has been granted since the 

statistics are associated with arithmetic means while (14) 

uses geometric means; fortunately, the performance of 

PFM is acceptable in practice. Generally, the fast execution 

time is the most crucial advantage of this method, but the 

performance is limited because PFM uses a fixed empirical 

brightness. 

B. Self-adaptive Coefficient Based on ResNet 

Conventionally, a neural network can simulate any 

relation between factors; therefore, it can generate an utterly 

optimal coefficient from the input image, achieving 

aself-adaptive process. A ResNet defined as 

𝛹𝑟: 𝑅𝐻×𝑊×𝑁 → 𝑅1 and based on the L2-norm loss can 

be written as follows: 

𝑎𝑟𝑔 𝑚𝑖𝑛
𝛹𝑟

 (𝛹𝑟(𝑋, 𝜔𝑟) − 𝛼𝑡)2

+ 𝛽𝑟𝜌𝑟(𝛹𝑟(𝑋, 𝜔𝑟)), 

(17) 

where 𝐻 , 𝑊 , and 𝑁  respectively denote the height, 

width, and number of the hazy image; 𝑋 ∈ 𝑅𝐻×𝑊×𝑁 is 

the input of 𝛹𝑟 ; 𝜔𝑟  denotes parameters used in 𝛹𝑟 ; 

𝛼𝑡 ∈ 𝑅1  represents the optimal 𝛼  obtained through 

experiments based on 𝑋, and 𝛽𝑟 is a coefficient. The first 

term is the reconstruction loss to force the estimated 𝛼 to 

be close to 𝛼𝑡, and the second term is a regularization term 

including a function 𝜌𝑟 used to prevent extreme situations 

or smoothen the output. We use ResNet-18, ResNet-34, 

and ResNet-50 in this study. These networks are designed 

for image recognition, thereby naturally generating the 

result of 𝑅1; we refer to [10] for detailed information on 

these networks. Note that the regularization term is ignored 

since the widely-used terms, such as TV-norm [25], DCP 

terms, or L1-norm, are meaningless while the output of 𝛹𝑟  

is a constant. 

Fig. 2(a) illustrates the architecture of our network 

(RNet). Similarly, red lines denote steps associated with the 

training phase, and the blue lines indicate the reference 

steps. The time-consuming part lies in the dehazing process 

and the benchmark computing between the dehazed 

images and ground truth. We use mean square error (MSE) 

to measure the quality of dehazed images in this study. The 

advantage of RNet is its theoretical soundness and 

architectural intuition, making RNet perform well. 

However, when the number of training and validating 

datasets is large, the cost of training such a network is 

considerably huge owing to a time-consuming calculation 

of the best coefficient 𝛼𝑡.  

C. Self-adaptive Coefficient Based on Contrastive 

Learning 

When conducting the above experiments, we observed 

that the coefficient holds a solid relation to the dazed 

image’s brightness; this means that even with a limited 

training set, PFM remains accurate. On the contrary, the 

performance of RNet strongly relies on the number of the 

training set. The conclusion inspires us with a new 

framework capable of generating the optimal coefficient 

with a simplified process. 

As previously discussed, computing the optimal 

coefficient for each image in the dataset across all 

coefficients can enhance visual quality significantly. 

However, this approach is time-consuming. Hence, we 

seek an alternative benchmark. Leveraging the brightness 

function proves highly beneficial in simplifying the training 

phase of the coefficient optimization framework; this is 

because computing the brightness of both hazy and 

dehazed images is comparatively easier than refining 

 

(a) 

Figure 3. The RNet architecture involves the ResNet to 

directly fit the optimal coefficient to the hazy image, so, in 

the reference step, the optimal coefficient of the dehazing 

algorithm can be solved easily; however, the training 

phase is time-consuming. 

 

(a) 

Figure 2. The CLNet architecture involves the ResNet 

based on contrastive loss to fits he actual mean brightness 

to the hazy image. In the reference step, the ResNet 

generates the optimal mean brightness from the hazy 

image; after that, we estimate the mean optimal 

transmission based on the brightness function. Finally, 

PFM generates an optimal coefficient for the dehazing 

algorithm. 
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transmission, suggesting that we can estimate the optimal 

brightness of the dehazed image from the hazy image 

instead of directly estimating the optimal coefficient. 

Consequently, we can train a network to accurately 

estimate 𝜇𝑔,𝑆�̂�
 from the hazy image, enabling rapid 

generation of the optimal α based on the brightness 

function and PFM. 

Fig. 3(a) illustrates the architecture of our contrastive 

learning network (CLNet). The red lines show that the 

training phase is more straightforward than that of RNet; on 

the other hand, the blue lines show that the inference 

process can be done rapidly, too.  Summarily, CLNet 

estimates 𝜇𝑔,𝑆�̂�
, so we can quickly obtain corresponding 

𝜇𝑔,𝑡𝑟 according to the brightness function since 𝜇𝑔,𝑆�̂�
 is 

known. After that, PFM rapidly generates an optimal 𝛼. 

The preceding discussion highlights several advantages of 

CLNet, which include: 

⬧ Individual brightness estimation for each image in 

the dataset, as opposed to a fixed estimation derived 

from statistics. 

⬧ Avoidance of compromises by utilizing arithmetic 

means instead of geometric means. 

⬧ Streamlining the training process by circumventing 

time-consuming calculations required to obtain the 

optimal coefficient for each image. 

To improve the performance of ResNet, we introduce a 

network based on contrastive regularization, denoted as 

𝛹𝑟𝑐: 𝑅𝐻×𝑊×𝑁 → 𝑅1; the architecture is inspired by the 

loss function proposed in [26]-[29], as follows: 

𝑎𝑟𝑔 𝑚𝑖𝑛
𝛹𝑟𝑐

 (𝛹𝑟𝑐(𝑋, 𝜔𝑟𝑐) − 𝜇𝑔,𝑆�̂�
)2

+ 𝛽𝑟𝑐𝜌𝑟𝑐 (𝛹𝑟𝑐(𝑋, 𝜔𝑟𝑐), 𝜇𝑔,𝑆�̂�
, 𝜇𝑔,𝑆�̂�

) , 

(18) 

where 𝛹𝑟𝑐 is a ResNet based on the contrastive term 𝜌𝑟𝑐 

controlled by a parameter 𝜌𝑟𝑐 , and 𝜔𝑟𝑐  indicates 

parameters used in 𝛹𝑟𝑐 . More specifically, 𝜌𝑟𝑐  is a 

function defined as follows: 

𝜌𝑟𝑐(. ) =  
𝜇𝑔,𝑆�̂�

− 𝛹𝑟𝑐(𝑋, 𝜔𝑟𝑐)

𝜇𝑔,𝑆�̂�
− 𝛹𝑟𝑐(𝑋, 𝜔𝑟𝑐)

. 

(19) 

We use 𝛽𝑟𝑐 to balance the reconstruction and contrastive 

terms. Note that the contrastive term pulls the output to 

ideal brightness (based on the clear image) and pushes the 

output far from unfavorable brightness (based on the hazy 

image), so it should improve the performance of this 

model. 

IV. EXPERIMENTAL ANALYSIS 

The experiment is implemented by PyTorch 2.01 with 

Python 3.9.16. We use NVIDIA GTX 3060 12G under an 

environment based on CUDA 11.8 and CUDNN 8.6.0. 

We train our networks using Adam optimizer with 𝛽1 

and 𝛽2 respectively equal to 0.9 and 0.99. Besides, the 

initial learning rate and batch size are set to 0.0002 and 16, 

respectively, and the learning rate is adjusted using the 

cosine annealing method [30]. Empirically, the balancing 

coefficient  𝛽𝑟 and 𝛽𝑟𝑐 are set to 0.1 and 0.15, and the 

total number of the epoch is 100. As for training sets, the 

RESIDE dataset [9] is a commonly used dataset in which 

the indoor training set (ITS) and outdoor training set (OTS) 

are widely used in training networks. The details of our 

experiment are as follows. 

First, we calculate the geometric mean of the initial 

(𝜇𝑔,𝑡) and estimated transmission (𝜇𝑔,𝑡𝑟), based on 𝛼 

from 0 to 10 with a fixed increasing step of 0.25. After that, 

we mark every image's optimal coefficient (𝛼𝑡) in ITS and 

OTS as labels. Meanwhile, we also calculate the geometric 

means of the negative image associated with the clear 

(𝜇𝑔,𝑆�̂�
) and hazy images (𝜇𝑔,𝑆�̂�

) based on the same 𝛼. 

After the preprocessing, we fit 𝜇𝑔,𝑡𝑟  to a function 

composed of 𝛼  and 𝜇𝑔,𝑡  to create PFM, as 

demonstrated in (16); this results in a serial coefficient 𝑐𝑝 

of (0.0005926, 0.2795, 1.051, −0.1841). As for RNet, it is 

trained based on 𝛼𝑡,  ITS, and OTS. Besides, we train 

CLNet with the same datasets except for using 𝜇𝑔,𝑆�̂�
 

instead of 𝛼𝑡. With the help of CLNet, we obtain 𝜇𝑔,𝑡𝑟 

according to the brightness function in (14), so an optimal 

𝛼 is available by solving PFM in (16). 

We choose Several state-of-the-art dehazing algorithms 

for comparison, including the dark channel prior (DCP) [1], 

boundary constraint and contextual regularization (BCCR)  

[2], non-local image dehazing (NLD) [3], color attenuation 

prior (CAP) [4], AOD-net (AOD) [5], gated fusion 

network (GFN) [6],  contrast enhancement and exposure 

fusion algorithm (CEE) [8], contrast in haze removal 

algorithm (CIH) [22], and Low Visibility Image 

Enhancement (LVE) [19]. The benchmarks used in our 

experiments include: 

⬧ The mean square error (MSE). 

⬧ The peak signal-to-noise ratio (PSNR). 

⬧ The structural similarity index (SSIM) [31]. 

⬧ The CIEDE2000 [32]. 

⬧ The F&T (including FSITM [33] and TMQI 

[34]). 

⬧ The regular DehazeFR [35]. 

⬧ The image quality evaluation (PIQE) [36]. 

⬧ The image quality assessment (NRIQA) [37]. 

⬧ The blind image quality evaluation (BIQE) [38]. 

MSE, PSNR, SSIM, and CIEDE2000 can evaluate image 

quality in the spatial domain concerning the square error, 

signal-to-noise ratio, structure similarity, and color bias. 

Besides, F&T assesses features in the frequency domain; 

we use this for comparison with spatial-domain 

benchmarks. Moreover, we use the regular DehazeFR [35] 

to evaluate the performance regarding structure recovery, 

color renditions, and suppression of over-enhancement. We 

also test our method using non-reference benchmarks; 

these benchmarks can assess the quality of contrast, 

brightness, and naturalness. The non-reference benchmarks 

are beneficial to compare with reference benchmarks, 

ensuring algorithms generate accurate and quality results. 

Eventually, we conduct the evaluations on two datasets, 
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including the synthetic objective testing set (SOTS) [9] in 

the RESIDE dataset and the HazeRD dataset (HRD) [39]. 

A. Evaluation of Restoration Accuracy 

Our approach aims to generate optimal coefficients for 

a dehazing algorithm proposed in [19]; we adopt LVE as 

the dehazing algorithm. Note that our methods provide 

optimal coefficients based on PFM, RNet, and CLNet, 

whereas LVE employs a fixed 𝛼 , We conducted 

experiments to assess the performance of our methods 

alongside several state-of-the-art dehazing techniques using 

hazy images from SOTS and HRD datasets. Notably, in 

this experiment, our methods are based on ResNet-34, as 

depicted in Table I. SOTS encompasses both indoor and 

outdoor scenes. At the same time, HRD includes 

countryside scenes, each exhibiting synthesized haze. 

Empirically, the synthesized haze in SOTS tends to be 

relatively thin, whereas some HRD images feature thicker 

haze. Conventional dehazing algorithms generally yield 

average results across both test sets, whereas deep 

learning-based methods exhibit distinct performance, 

particularly excelling in scenarios with thin haze layers. 

According to Table I, our methods and LVE 

outperform other dehazing algorithms. PFM improves the 

performance of LVE when dealing with HRD. However, 

the performance slightly degrades in dehazing the 

validation image of SOTS; this should be ascribed to the 

simplification from (15) to (16), a compromise that uses 

arithmetic mean instead of geometric mean, and a fixed 

target brightness according to the rough statistics. On the 

other hand, RNet significantly outperforms PFM because 

of a direct transformation from the input image to the 

optimal coefficient. The experimental results show that 

RNet can generate beneficial coefficients, so all the 

non-reference benchmark results show a complete 

upgradation compared with LVE and PFM. Besides, the 

performance of CLNet is very competitive, outperforming 

RNet concerning almost all non-reference benchmarks 

based on SOTS and being comparable to RNet in tests 

based on HRD. We ascribe the superior performance to the 

contrastive regularization and the reasonable designation; 

i.e., this method estimates the brightness of the input image 

instead of the fixed optimal brightness based on statistics 

and improves the defection of using the arithmetic mean. 

B. Evaluation of Single Image Quality 

The above experiments show that the proposed method 

improves dehazing performance by automatically choosing 

the optimal coefficient. However, high restoration accuracy 

does not guarantee high image quality; therefore, we use 

PIQE, NRIQA, and BIQE to assess the image quality 

concerning low-level features and image naturalness and 

demonstrate the experimental results in Table II. PIQE, 

NRIQA, and BIQE indicate high image quality with lower 

numbers. The experimental results show that CLNet is 

superior to state-of-the-art methods again; meanwhile, it 

also outperforms PMF and RNet. Combining experimental 

results demonstrated in Table I and Table II, we prove that 

the optimal coefficient generated by CLNet benefits 

restoration accuracy and image quality. 

C. Evaluation of Execution Time 

 We conducted experiments to assess the performance 

of various network models and quantify the average 

inference time. Table III showcases the experimental 

findings undertaken in the scope of SOTS. Generally, 

lightweight networks meet the requirements of RNet and 

CLNet due to the comparatively more straightforward 

complexity involved in optimizing coefficients or 

brightness than generating an image. However, our 

experimental results indicate that RNet's performance is 

more dependent on network depth, steadily increasing from 

ResNet-18 to ResNet-50. Conversely, increasing network 

depth only marginally enhances CLNet's performance 

TABLE I 
FULL-REFERENCE BENCHMARK RESULTS 

Benchmark Dataset 
DCP BCCR NLD CAP AOD GFN  CEE  CIH  LVE  Ours 

PFM 
Ours 
RNet 

Ours 
CLNet 

SSIM SOTS 0.8418 0.7862 0.7752 0.8796 0.8673 0.8673 0.7519 0.8613 0.8971 0.8956 0.9026 0.9110 

-Luminance SOTS 0.9256 0.8895 0.8846 0.9148 0.9090 0.9140 0.8221 0.9068 0.9267 0.9231 0.9286 0.9307 

-Contrast SOTS 0.9389 0.9144 0.9324 0.9756 0.9715 0.9720 0.9187 0.9699 0.9760 0.9696 0.9691 0.9704 

-Structure SOTS 0.9708 0.9618 0.9287 0.9842 0.9710 0.9618 0.9861 0.9720 0.9895 0.9851 0.9899 0.9898 

F&T SOTS 0.8543 0.8590 0.8707 0.8628 0.8638 0.8559 0.8274 0.8453 0.8863 0.8802 0.8911 0.8924 

DehazeFR SOTS 0.9574 0.9704 0.9767 0.956 0.9591 0.9859 0.9192 0.9715 0.9861 0.9821 0.9895 0.9871 

  MSE SOTS 0.0181 0.0280 0.0217 0.0109 0.0152 0.0094 0.0273 0.0181 0.0110 0.0135 0.0103 0.0101 

  PSNR SOTS 18.761 16.304 17.680 20.608 19.156 21.927 16.406 18.642 22.118 22.003 22.209 22.373 

CieDE2000 SOTS 8.9463 11.361 10.807 7.0421 7.9620 6.1328 12.507 8.7300 6.0380 6.2703 6.0217 6.0107 

SSIM HRD 0.6055 0.6796 0.6393 0.6385 0.6005 0.5168 0.4888 0.6680 0.7211 0.7384 0.7528 0.7514 

-Luminance HRD 0.8750 0.9215 0.9013 0.9172 0.8961 0.7448 0.8062 0.9081 0.9169 0.9191 0.9295 0.9288 

-Contrast HRD 0.7353 0.7780 0.7818 0.7265 0.7142 0.7589 0.6734 0.7922 0.8012 0.8135 0.8217 0.8199 

-Structure HRD 0.9628 0.9495 0.8739 0.9487 0.9463 0.9222 0.9312 0.9232 0.9710 0.9730 0.9780 0.9782 

F&T HRD 0.7969 0.7862 0.8165 0.7898 0.7938 0.8101 0.8057 0.8105 0.8224 0.8276 0.8365 0.8347 

DehazeFR HRD 0.8482 0.8950 0.9045 0.8128 0.8075 0.8913 0.8577 0.9105 0.9160 0.9183 0.9257 0.9254 

MSE HRD 0.0388 0.0358 0.0443 0.0395 0.0339 0.0513 0.0390 0.0294 0.0312 0.0291 0.0285 0.0282 

PSNR HRD 14.661 15.147 14.576 15.506 15.473 13.813 15.832 16.113 16.203 16.496 17.295 17.305 

CieDE2000 HRD 14.967 13.853 15.046 14.229 14.395 16.277 16.634 12.058 11.900 11.757 11.254 11.015 

Bold: the best result among the tested algorithms 

TABLE II 
NON-REFERENCE BENCHMARK RESULTS 

Benchmark Dataset 
DCP BCCR NLD CAP AOD GFN  CEE  CIH  LVE  Ours 

PFM 
Ours 
RNet 

Ours 
CLNet 

PIQE SOTS 40.701 35.934 39.317 42.451 43.863 40.701 42.428 39.870 36.262 35.925 34.802 34.173 

NRIQA SOTS 26.815 24.636 26.354 32.527 30.522 26.986 25.904 25.728 24.527 24.671 24.119 23.991 

BIQE SOTS 2.8782 2.9021 2.8308 3.0936 3.1258 2.9992 2.9066 2.9582 2.9129 2.8999 2.8629 2.8015 

PIQE HRD 49.126 43.682 46.419 53.612 52.167 48.727 51.584 45.683 44.614 43.892 43.262 42.612 

NRIQA HRD 35.125 32.581 35.175 38.761 38.596 39.681 40.174 34.982 33.001 33.252 33.016 32.828 

BIQE HRD 3.5126 3.3117 3.3671 3.8011 3.8191 3.4100 3.7851 3.6199 3.2162 3.0991 2.9971 2.8671 

Bold: the best result among the tested algorithms 
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when the depth remains below 34, as evidenced by the 

limited improvement between ResNet-34 and ResNet-50 

results. These experiments highlight the intricacy of solving 

the coefficient optimization problem compared to 

brightness estimation, necessitating a more profound 

architecture for RNet to excel. On the contrary, CLNet 

consistently outperforms RNet, showcasing significant 

superiority. We denote the best RNet results concerning 

dehazing algorithms with bold; meanwhile, we also 

indicate LNet results surpassing the best RNEt results in 

bold. The superiority of CLNet, based on ResNet34, over 

RNet based on ResNet50, is unmistakable. 

Finally, we compute the average inference time based 

on 100 executions using images of identical sizes. The 

results, denoted in milliseconds (ms.) and presented on the 

right side of Table II, indicate that the average inference 

times for RNet and CLNet are nearly identical, with slight 

discrepancies attributed to additional calculations. 

V. CONCLUSIONS 

In this manuscript, we present several novel coefficient 

optimization frameworks for dehazing algorithms, 

encompassing frameworks based on regression, 

deep-learning networks, and contrastive learning. Despite 

the widespread adoption of deep-learning-based dehazing 

algorithms, our findings reveal their limitations in 

addressing thick haze conditions. Moreover, the end-to-end 

framework exacerbates these challenges. In contrast, a 

configurable dehazing algorithm offers adjustability through 

coefficients to enhance brightness and contrast. However, 

selecting an appropriate coefficient poses difficulties. Our 

approach aims to assist configurable dehazing algorithms in 

determining optimal coefficients, thus overcoming the 

rigidity inherent in deep-learning-based approaches. By 

mitigating inconvenience and enhancing performance, our 

method extends the capabilities of configurable dehazing 

algorithms. Ultimately, our approach is evaluated and 

demonstrated to outperform existing methods, ensuring 

flexible usage and superior performance.  
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