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ABSTRACT 

In this study, we propose and evaluate a fixed-point image-

acquiring framework to overcome adverse situations caused by 

camera activities. Our method integrates optical flow 

algorithms and random sample consensus (RANSAC) to 

detect the orientation and focal center of the camera's motion 

and zoom-in, respectively. Image restoration study is a typical 

example facing data collection issues because the samples and 

the ground truth must be captured at the same positions in 

different situations, necessitating substantial human resources. 

Therefore, automation and pre-processing are essential skills in 

corresponding preliminary works. Our method helps collect 

image restoration datasets in the experiments by analyzing the 

24-hour online video stream. Corresponding results indicate 

our method has satisfactory performance, resulting in only 

21% accuracy loss in unfavorable natural and artificial 

conditions compared with tasks processing on sunny days. 

 

Keywords: Haze, Dehaze, Haze Removal, Coefficient 

Optimization, Self-adaptive Coefficient, Contrastive Learning  

I. INTRODUCTION 

In the recent world, supervised machine learning has 

become an emerging task; therefore, data involving particular 

ontology were priceless for those emerging tasks and vendible 

products. Data acquisition plays a vital role in developing 

today's technology. Conventionally, data acquisition relied on 

much staffing. Automation of data acquisition reduced costs 

and eventually facilitated the progress of machine learning. 

However, acquiring data from the real world was challenging, 

even in the modern world with advanced equipment. Image 

restoration was a vital field studying the recovery of impaired 

images [1]. Image restoration was distinct from enhancement 

tasks, aiming to eliminate adverse effects imposed on the scene 

instead of enhancing brightness, contrast, or detailed features; 

for example, the dehazing task proposed in [2]-[5]. The 

comprehensive hazy dataset should involve impaired images 

and corresponding ground truth captured in fixed positions 

[6][7]. With the ground truth, researchers could train a model 

by minimizing the error between the dehazed image and 

ground truth; however, acquiring the comprehensive hazy 

dataset remains a case-by-case challenge; it is usually time-

consuming and needs various techniques. 

Lacking the comprehensive hazy dataset, some 

researchers used synthesized datasets instead to train their 

models. Li et al. proposed a hazy dataset [8] composed of real-

world images collected from the internet and used the real-

world images to synthesize hazy images. Zhang et al. proposed 

a method to simulate various weather conditions; in this way, 

they synthesized impaired images, including hazy and 

sandstorm conditions [9]. Synthesized hazy datasets were the 

remedy for the lack of a comprehensive hazy dataset with 

sacrifices of proper performance because the simulation of the 

natural environment was not promising.  
There are two ways to build a comprehensive hazy dataset. 

First, collecting images using the camera in fixed positions with 

staffing is highly time-consuming because machine learning 

takes many samples; meanwhile, adverse weather only 

happens sometimes. Second, images can be collected online; 

real-time video streaming is a common technique in developed 

countries. The second method is relatively convenient because 

some cameras are in fixed positions. For example, the Taiwan 

government has conducted the open government platform 

(OGP) [11] and deployed many cameras at tourist spots 

[12][13], vital traffic places [14], and air-quality monitoring 

stations [15]; these resources allow us to acquire data indoors 

with computer programs; moreover, the cameras are deployed 

in fixed positions and are capable of collecting images with the 

change of weather. 

Moving cameras was the first challenging problem in 

building the comprehensive hazy dataset based on OGP and 

caused many problems because the scene content, lighting, and 

natural-environment features changed; this resulted in issues 

when adjusting the camera parameters to adapt to the changes. 

Therefore, moving camera issues were widely studied in 

various research fields, such as online tracking [16], object 

detection [17][18], and semantic parsing [19]. As previously 

discussed, the comprehensive hazy dataset must contain hazy 

and clear images (the ground truth), meaning cameras should 

be static and have a fixed orientation; therefore, moving 

cameras are problematic for capturing samples. Feature 

matching is a fundamental technique that allows researchers to 

find corresponding points between two images and calculate 
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the movement of cameras. However, feature-matching 

algorithms are various, and most take time; therefore, optical 

flow algorithms [20][21] were widely used to avoid heavy 

computation. 

Gibson [20] provided the fundamentals of calculating the 

object's shifting; various derivative algorithms were proposed 

afterward. In computer vision, the features used to calculate the 

optical flow comprised keypoints and their feature descriptors. 

Keypoints pointed out where the features were, while their 

feature descriptors described how to extract them. From the 

perspective of feature descriptors, optical flow algorithms 

based on low-level properties might save execution time 

because feature descriptors take time, such as SIFT [22]; 

however, this resulted in another problem: the keypoints used 

to calculate the optical flow might have very dense 

distributions or take much time to calculate. Like other 

algorithms, the optical flow algorithms needed help with a 

trade-off between time complexity and accuracy; generally, the 

gap in time complexity lay on feature descriptors and keypoint 

distributions. As a result, optical flow algorithms were distinct 

as dense, semi-dense, and sparse methods according to 

keypoint distributions. The dense method considered all pixels 

as keypoints. The semi-dense method involves only those 

pixels having a gradient, and the sparse method extracts 

keypoints using light-workload methods, such as corner 

detection algorithms. 

The most famous sparse method was called the Lucas-

Kanade optical flow (LKOF) [23]. LKOF assumed that 

keypoints in the world were rigid or deformable, elastically 

moving together coherently; therefore, LKOF looked for a 

constant motion for a limited number of keypoints. Similarly, 

the Kanade-Lucas-Tomasi feature tracker (KLT) [24][25] was 

a semi-dense method, calculating ShiTomasi corner points [25] 

and taking them as keypoints. Specifically, KLT pursued a 

balance between execution time and accuracy. On the contrary, 

Horn-Schunck optical flow (HSOF) was a dense method that 

considered optical flow a smooth flow within a very short time 

[26]; therefore, HSOF looked forward to a stable movement 

within every pixel and its neighbors. HSOF was a robust 

method that defined a smooth regularization term. With a 

similar concept, G. Farneback et al. proposed an algorithm 

(GFOF) [27] computing every pixel’s optical flow, which 

results in a considerable computational workload but might 

generate accurate estimations. The above-discussed algorithms 

enabled the motion calculation from low-level (points or edges) 

or high-level (features, objects) features in images. 

On the other hand, the optical flow was based on the 

assumption that the brightness of objects was invariant 

everywhere; this means an assumption of uniform illumination 

regardless of scene depth. As a result, changeable weather was 

the second challenging problem, resulting in non-uniform 

illumination and various disturbances. For example, the 

weather in Taiwan's mountain area was famous for being 

rapidly changed and unpredictable. Besides the haze and fog, 

changeable weather was widely discussed in various study 

fields, such as in the study of vehicle and saliency feature 

detection [28][29].  Furthermore, rain could disturb optical 

flow algorithms, causing rain streaks, veiling effects, and the 

len droplet [30]. Collecting data in the natural environment was 

challenging in complicated adverse situations. 

II. RELATED WORKS 

A. Optical Flow 

Under the assumption of invariant brightness in the video 

stream, the brightness of a pixel in a frame is as follows: 

𝐼(𝑋, 𝑡) = 𝐼(𝑋 + 𝛿(𝑋, 𝑡 + ∆𝑡)), (1) 

where 𝐼  denotes frames in the same video stream, 𝑋 

denotes the 𝑥 and 𝑦 coordinates of the center of the region 

of interest (ROI), and 𝛿 was called the replacement, meaning 

the coordinate change and was related to previous coordinates 

𝑋 and time changes ∆𝑡. The problem of the model is that the 

coordinate was self-correlated and sometimes violated because 

of occluding boundaries, hugely changed color, or surface 

brightness changes; this resulted in different flows within ROI. 

Moreover, when a tracked object went out of the windows and 

returned, the accuracy of LKOF was doubtful as reported in 

[31] by Shi et al. Shi et al. discussed the situation and proposed 

a new model, including an affine matrix in the replacement, as 

follows: 

𝛿 = 𝐷𝑋 + 𝑑, (2) 

where 𝐷 was the affine matrix describing the deformability 

as follows: 

𝐷 = [
𝑑𝑥𝑥 𝑑𝑥𝑦

𝑑𝑦𝑥 𝑑𝑦𝑦
], 

(3) 

and 𝑑  was the translation. Therefore, the motion was 

simplified as a simple matrix form as follows: 

𝐼(𝑋) = 𝐼(𝐴𝑋 + 𝑑), (4) 

where 𝐴 was defined as follows: 

𝐴 = 1 + 𝐷. (5) 

Note that 𝟏 denoted an identical matrix of 𝑅2×2. In this way, 

Shi et al. successfully improve the performance of tracking 

objects. However, this model needs a solver to resolve a 6x6 

matrix system iteratively, which takes much time. To balance 

the accuracy and execution time, Shi et al. conducted 

experiments to decide the best combination of the two models; 

eventually suggested using (4) to track objects and LKOF to 

estimate the camera motion.  

LKOF model simplified 𝛿  to the fixed translation of all 

keypoints to achieve faster execution and flexibility. The 

LKOF model was as follows: 

𝐼(𝑋) = 𝐼(𝑋 + 𝑑), (6) 

where 𝑑  denoted the translation. The LKOF model was 

widely used because it worked accurately with a very small 

ROI or even a keypoint. To analyze the relation associated with 

the motion, the Taylor series of (6) is necessary, as follows: 

𝐼(𝑋 + 𝑑) ≈ 𝐼(𝑋) +
𝜕𝐼(𝑋)

𝜕𝑥
𝑑𝑥 +

𝜕𝐼(𝑋)

𝜕𝑦
𝑑𝑦

+
𝜕𝐼(𝑋)

𝜕𝑡
𝑑𝑡 . 

(7) 

The above equation was truncated by ignoring the higher oder 

terms, resulting in a linear model. By the assumption of 

invariant brightness, (7) should lead to the following: 

𝜕𝐼(𝑋)

𝜕𝑥
𝑑𝑥 +

𝜕𝐼(𝑋)

𝜕𝑦
𝑑𝑦 +

𝜕𝐼(𝑋)

𝜕𝑡
𝑑𝑡 ≈ 0. 

(8) 
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To obtain the velocity 𝑉, both side in (8) were divided by 𝑑𝑡, 

generating the following:  

𝜕𝐼(𝑋)

𝜕𝑥
𝑉𝑥 +

𝜕𝐼(𝑋)

𝜕𝑦
𝑉𝑦 ≈ −

𝜕𝐼(𝑋)

𝜕𝑡
. 

(9) 

In an image, the derivative could be replaced with the gradient 

operator; therefore, the optical flow was written in the matrix 

form as follows: 

[𝛻𝑥, 𝛻𝑦] [
𝑉𝑥

𝑉𝑦
] ≈ −𝛻𝑡 , 

(10) 

where 𝛻𝑥, 𝛻𝑦, and 𝛻𝑡 respectively indicated the gradient of 

𝑥 axis, 𝑦 axis, and time. In video frames, (10) usually led to 

the overdetermined situation if keypoints were sufficient; 

therefore, using the least square method could quickly solve the 

optimal estimation of 𝑉𝑥  and 𝑉𝑦 . Specifically, LKOF 

suggested using weighted least square and iteratively selecting 

keypoints to optimize 𝑉𝑥 and 𝑉𝑦, and the details of (10) were 

as follows: 

[

𝛻𝑥1
𝛻𝑦1

… …
𝛻𝑥𝑛

𝛻𝑦𝑛

] [
𝑤1 … 0
… … …
0 … 𝑤𝑛

] [
𝑉𝑥1

… 𝑉𝑥𝑛

𝑉𝑦1
… 𝑉𝑦𝑛

] 

≈ −[𝛻𝑡1
… 𝛻𝑡𝑛], 

(11

) 

where 𝑛 denoted the number of keypoints, and 𝑤𝑛 was the 

weight. Note that 𝑤𝑛  formed a diagonal matrix and was 

usually negatively proportional to the distance from the ROI 

center. 

B. Shi-Tomas Corner 

Shi-Tomas corner detector [24][25] was an evolution 

version of the Harris corner detector [32]. Harris et al. figured 

out that compared with other situations, patches containing any 

corner structure had considerable dissimilarity when they 

shifted to any orientation; this resulted in a formula to detect 

corner points by calculating the dissimilarity, as follows:  

𝜖 = ∑ 𝑤𝑠(𝐼(𝑋) − 𝐼(𝑋 − 𝑑))2

𝑋

, 
(12) 

where 𝑤𝑠 was the weight. Similar to the derivation from (6) 

to (7), we could linearize the later part of the equation based on 

the Taylor series, and the result was as follows: 

𝐼(𝑋 − 𝑑) ≈ 𝐼(𝑋) +
𝜕𝐼(𝑋)

𝜕𝑥
𝑑𝑥 +

𝜕𝐼(𝑋)

𝜕𝑦
𝑑𝑦 . 

(13) 

Note that there was no 𝑑𝑦 because this happened in a single 

image, and the derivative could be replaced with the gradient 

operator in images. Therefore, substituting (13) to (12) 

generated the following: 

𝜖 ≈ ∑ 𝑤𝑠

𝑋

(𝛻𝑥𝑑𝑥 + 𝛻𝑦𝑑𝑦)
2

. 
(14) 

Therefore, this generated the quadratic equation of matrix form, 

as follows: 

𝜖 ≈ [𝑑𝑥 , 𝑑𝑦]𝑀 [
𝑑𝑥

𝑑𝑦
], 

(15) 

where the matrix 𝑀 was a self-correlated matrix, defined as 

follows: 

𝑀 = [
(𝛻𝑥)2 𝛻𝑥𝛻𝑦

𝛻𝑦𝛻𝑥 (𝛻𝑦)2]. 
(16) 

Harris et al. suggest using a surrogate benchmark to estimate 

corner points as follows: 

𝑅 = 𝑑𝑒𝑡𝑀 − 𝛼 ∗ 𝑡𝑟𝑎𝑐𝑒(𝑀)2, (17) 

where 𝑅 is the surrogate benchmark, and 𝛼 is a coefficient 

to weight the trace.  

However, the surrogate benchmark sometimes caused 

problems, resulting in accuracy decay. Shi et al. explained that 

Harris’s equation in (17) is highly related to 𝜆𝑛 because of the 

following: 

𝑑𝑒𝑡𝑀 =  𝜆1 ∗  𝜆2, (18) 

and the trace was as follows: 

𝑡𝑟𝑎𝑐𝑒(𝑀) =  𝜆1 +  𝜆2. (19) 

However, the quadratic equation was the elliptic function, 

and the eigenvalue 𝜆𝑛  of the self-correlated matrix 𝑀 

denoted the texture changes in different axes of the elliptic. Shi 

et al. correlated 𝜆𝑛 to the texture and concluded three cases. 

Two small 𝜆𝑛 indicated the constant intensity profile of 

texture patterns, and a large 𝜆𝑛  and a small 𝜆𝑛  show the 

unidirectional texture pattern. Two large 𝜆𝑛  strongly 

suggested corner points, salt-and-pepper noises, or other 

reliable features; therefore, good features were highly 

associated with 𝜆𝑛. Accordingly, they defined the following 

to obtain 𝑅: 

𝑅 = 𝑚𝑖𝑛(𝜆1, 𝜆2). (20) 

This way, when 𝑅  was larger than a given thresholding, it 

meant there was a reliable corner point. 

C. Video Stream 

The OGP system is built on the YouTube platform based 

on various streaming techniques. The HTTP live streaming 

(HLS) [35] is the most popular streaming protocol owing to 

Apple’s support; however, it only supports H.264 and H.265. 

On the other hand, real-time messaging protocol (RTMP) is 

also a widely used protocol [34], which Adobe provides. 

Besides, the dynamic adaptive streaming over HTTP (DASH) 

accepts various media formats. Unlike the progressive stream, 

HLS, RTMP, and DASH allow clients to extract a single type 

of multiple video streams with better quality at a fixed bit rate; 

therefore, techniques to transfer the media information are 

essential. HLS clients acquire media information through a 

descriptor called the MP3 URL (M3U); this is a text format file, 

and M3U8 supports UTF-8. On the other hand, DASH uses 

the media presentation description (MPD), and MPD is built in 

XML format (also with UTF-8 support). MPD specification is 

defined by ISO/IEC 23009-1 [35]; therefore, DASH is also 

known as MPEG-DASH. 

M3U8 and MPD are crucial techniques; precisely, after 

requesting a resource existing in the HTTP server, the HTTP 

server separates the resource into segments and writes the 

metadata as M3U8 and MPD. Clients can acquire the resource 

by appropriate HTTP-URLs. The most important part of the 

M3U8 and MPD is the MIME information, which tells clients 

how to process the file according to the type. This study used 

the Vidgear package to analyze MPD and acquire the 

necessary video stream from YouTube. Afterward, we use 

Python to detect the camera motion, address specific scenes, 

collect image samples, and construct a comprehensive hazy 

dataset for further study. 

III. THE PROPOSED METHOD 
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A. Problem Address and Our Goal 

After some surveys and two months of field operation, we 

figured out that the difficulty of building a comprehensive hazy 

dataset based on OGP was the changeable natural environment 

and camera activities; among them, the natural environment 

issues include the following: 

 Noises 

 Hazy and Fog Effects 

 Rain Effects 

 Weather Changes 

 Backlight 

We illustrated some cases related to the abovementioned 

problems in Fig. 1. Figs. 1(a) and 1(b) demonstrate images 

captured under good weather at different times, and the color 

tones of the two images are different because of the sun’s 

position. Figs 1(c) and 1(d) show images captured at similar 

times but are captured under haze and fog conditions, 

respectively. The gradient of the two images is relatively weak, 

and distant objects in the two images are unclear or missing. 

Moreover, the camera activities also caused some problems, 

including: 

 Camera Motion 

 Camera Zoom-in 

 Len Rainlets 

 Len condensation 

Fig 1(e) illustrates a sea-view image captured under good 

weather, and the color tone is much closer to the canonical 

illumination. In the evening, the scattered sunlight seriously 

affected the sea view; therefore, the color tone is hugely biased, 

as illustrated in Fig. 1(f). On the other hand, Fig 1(g) is an 

example of the camera facing backlight problems in the 

morning; the backlight is too strong in some places, so the 

algorithm hardly works. Finally, we illustrated an image 

captured when the camera lens was covered with rainlets; this 

results in the distortion of objects, especially when the camera 

is zooming in or taking a long shot. 

Natural environments and camera activities can hinder the 

estimation of optical flows; this is the first issue we must 

address. Besides, according to the documents officially given 

by YouTube [36], the recommended bitrate of the 1080p 30fps 

image is 10 Mbps. Empirically, video in this format can work 

smoothly with a bitrate from 5 to 10 Mbps; therefore, the 

optical flow algorithm should take no longer than 0.033 

seconds to deal with two frames in the real-time video stream; 

however, the fast implementation might result in accuracy 

degradation. To balance the execution time and accuracy, we 

discard traditional benchmarks, trying to design a method that 

can fetch the maximal correct image (meaning the camera 

faces the same direction with a fixed focal length and angles). 

Meanwhile, OGP comprises various scenes, including 

natural (sea, mountain, lake, …) and artificial (building, 

highway, bridge, …) scenes. The texture of distinct objects 

differs, meaning the keypoints extraction is essential. The 

problem is difficult to resolve by a single algorithm; therefore, 

we must test and integrate various algorithms to succeed in our 

task. 

B. Detect Camera's Motion 

Note that our goal is to get images captured at the same 

position with the same camera angles to succeed in image 

restoration training. Unlike conventional optical flow 

frameworks, we aim to detect camera activities like motion and 

zoom-in. We used the CamGear library in the VidGear 

package [37] to fetch the video stream from YouTube. To 

accelerate the process, we wrote a multithreading program to 

initialize a new thread to make the request and awaited the 

response from YouTube while the main thread dealt with the 

optical flow algorithms. 

Camera motion is much easier to detect because all the 

keypoints should have the same optical flow at a short period 

except for those moving keypoints, as illustrated at the top in 

Fig. 2. Fig. 2(a)-(d) illustrates the rest ledge scene. At that time, 

the camera moved from the right to the left, resulting in objects' 

optical flows to the right, as demonstrated in red arrows. In this 

case, a simple consensus election voted by all keypoints can 

quickly reveal the camera's motion. First, we calculate the 

36 

 

(a) (b) (c) (d) 

 

(e) (f) (g) (h) 

Figure 1. The situation related to the camera, scenes, weather, and sun conditions. (a). distant-view image captured at 7:00 with clear 

air; (b). distant-view image captured at 7:40 with clear air; (c). distant-view image captured under haze conditions at 7:00; (d) distant-

view image captured under thick fog at 8:00; (e). sea-view image captured at 10:00 with clear air; (f). sea-view image captured in 

the morning with backlight; (h). sea-view image captured at 15:00 and covered with the color cast; (g). sea-view image captured at 

11:00, covered with rainlets, and suffered from camera motions. 
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magnitudes of all optical flow to collect a keypoint set 

composed of keypoints whose optical flow magnitudes exceed 

thresholding, as follows:  

𝑘 = { 𝑛 | ‖�⃗�𝑛‖ > 𝑡𝑚}, (21) 

where 𝑘 is the keypoint set,  �⃗�𝑛 denotes the optical flow of 

keypoint 𝑛, and 𝑡𝑚  is the thresholding associated with the 

magnitude of �⃗�𝑛. After that, we calculate the orientation of 

�⃗�𝑘  and denote the orientation as 𝜃�⃗⃗�𝑘
; after that, we form a 

histogram based on 𝜃�⃗⃗�𝑘
 to find the bin having the maximal 

number of keypoints, as follows: 

𝑎𝑟𝑔 𝑚𝑎𝑥𝑐  𝐻(𝜃�⃗⃗�𝑘
, 𝑐), (22) 

where 𝐻  denotes the histogram returning the number of 

elements in the bin 𝑐. In this way, we find the consensus most 

extensive supported by 𝑉 and ensure the camera's motion by 

giving lower-bound thresholding to 𝐻(𝜃�⃗⃗�𝑘
, 𝑐) , and the 

lower-bound thresholding 𝑡𝑛 is defined as follows:  

𝑡𝑛 = 0.5 ∗ 𝐶𝑎𝑟𝑑(𝑘). (23) 

We tested corresponding scenes with LKOF based on dense 

keypoints (d-LKOF) and Shi-Tomas corner detector (st-

LKOF), figuring out that st-LKOF seemed weak to deal with 

the camera motion based on (22). Fig. 2(a)-2(c) illustrates d-

LKOF results. The number of valid keypoints is sufficient to 

implement the consensus election which generates accurate 

results; on the other hand, st-LKOF generates fewer valid 

keypoints, making the result relatively unstable, as illustrated in 

Fig. 2(d). The color arrows in the images point out the direction 

related to 𝜃�⃗⃗�𝑘
. Meanwhile, we represent the orientation with 

the HSV Hue channel, and the definition is as follows: 

 𝐻ℎ𝑠𝑣 = 360° ∗  𝜃�⃗⃗�𝑘
𝜋⁄ . (24) 

C.   Detect Camera Zoom-in 

We looked into a more complicated case concerning camera 

zoom-in, as illustrated at the bottom of Fig 2. The vector field 

of �⃗�𝑘 in Figs. 2(e)-2(g) distribute tidily, and all of �⃗�𝑘 come 

from the same source located at the left-bottom of the scene; 

this leads to the fact that lines forming by �⃗�𝑘 are concurrent, 

meaning that the lines share a common point. We denote the 

lines formed by �⃗�𝑘  and the common point 𝑝  as 𝐿�⃗⃗�𝑘,𝑝 . 

Accordingly, 𝐿�⃗⃗�𝑘,𝑝 is defined as follows: 

𝑦𝑘 − 𝑝𝑦 =
𝑎𝑘

𝑏𝑘

(𝑥𝑘 − 𝑝𝑥), 
(25) 

where 𝑥𝑘  and 𝑦𝑘  respectively denote the coordinator of 

𝐿�⃗⃗�𝑘,𝑝  concerning 𝑥  and 𝑦  axes; 𝑝𝑥  and 𝑝𝑦  denote the 

coordinator of the common point 𝑝; 𝑎𝑘 and 𝑏𝑘 denote the 

components of �⃗�𝑘 concerning 𝑥 and 𝑦 axes, respectively. 

However, the formula represents the ideal concurrent system; 

we can check the optimal common points 𝑝  from lines 

formed by �⃗�𝑘 (denoted as 𝐿�⃗⃗�𝑘
), and the generic formula of 

𝐿�⃗⃗�𝑘
 is as follows: 

𝑏𝑘𝑦𝑘 − 𝑎𝑘𝑥𝑘 + 𝑐𝑘 = 0, (26) 

where 𝑐𝑘 denotes a constant. Since 𝑝 is not fully compatible 

to the ideal concurrent system, we can calculate the distance 

between 𝑝 and 𝐿�⃗⃗�𝑘
 to estimate errors, as follows: 

𝑑(𝑝, 𝐿�⃗⃗�𝑘
) =

|𝑏𝑘𝑝𝑦 − 𝑎𝑘𝑝𝑥 + 𝑐𝑘|

(𝑎𝑘
2 + 𝑏𝑘

2)1/2
, 

(27) 

where 𝑑() denotes a function returning the distance between 

two inputs. Therefore, we conclude that 𝑝 can be solved by 

minimizing an energy term defined as follows: 

𝑎𝑟𝑔 𝑚𝑖𝑛𝑝  ∑ 𝑑(𝑝, 𝐿�⃗⃗�𝑘
)

𝑘

. 
(28) 

However, optimizing (28) directly is unrealistic because of 

the absolute value symbol; this makes the equation non-linear 

and cannot be solved based on quadratic optimization. To 

eliminate the effect of the absolute value symbol, we rewrite 

(28) as follows: 

𝑎𝑟𝑔 𝑚𝑖𝑛𝑝  ∑ 𝑑(𝑝, 𝐿�⃗⃗�𝑘
)

2

𝑘

. 
(29) 

Therefore, we obtain the following: 

 

(a) (b) (c) (d) 

 

(e) (f) (g) (h) 

Figure 2. (a)(b)(c) images of a rest ledge scene captured with the camera's motion; the arrow indicates the orientation of the d-LKOF, 

GFOF, and RLOF; (d) image of the same scene; the color lines indicate the optical flow generated by st-LKOF, and the keypoints 

are less than those sparse to dense methods; (e)(f)(g) images of a mountain view captured with camera zoom-in; the arrow indicates 

the orientation of the d-LKOF, GFOF, and RLOF; (h) image of the same scene; the color lines indicates the optical flow generated 

by st-LKOF, and the optical flow are related to both camera zoom-in and cloud's movements. 
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𝑎𝑟𝑔 𝑚𝑖𝑛𝑝  ∑
(−𝑏𝑘𝑝𝑦 + 𝑎𝑘𝑝𝑥 − 𝑐𝑘)2

𝑎𝑘
2 + 𝑏𝑘

2

𝑘

. 
(30) 

Note that this means fitting a linear model concerning 𝑝 with 

the output 𝑐𝑘  while 𝑐𝑘  can be computed from �⃗�𝑘  with 

𝑎𝑘 , 𝑏𝑘 , and one of its endpoints. Unfortunately, finding 

optimal common points based on the regression remains 

unrealistic. Moving objects can affect some optical flows, 

making these optical flows irrelevant to camera zoom-in and 

becoming outliers. For example, the cloud moves because of 

the wind, as shown in Figs. 2(e)-2(g), and the corresponding 

optical flows have distinct orientations compared with those 

only affected by the camera's motion. Note the left-top region 

in Figs. 2(e)-2(g) exhibits many outliners; this could disable 

any regression estimator.  

Concerning the above-mentioned issues, we use the random 

sample consensus (RANSAC) to estimate 𝑝. First, we choose 

several hypothetical inliers from keypoints in 𝑉  and fit the 

hypothetical inliers based on (30). Second, we evaluate other 

keypoints with the fitted model to form the consensus set 

composed of keypoints whose errors are acceptable. Finally, if 

the number of the consensus set is enough, the model is 

accepted; otherwise, we restart from the first step. In this way, 

we can estimate the focal center of the camera zoom-in activity 

with 𝑝. The necessary number of iterations of RANSAC can 

be calculated with the empirical inlier probability and the 

expected accuracy, defined as follows: 

𝑘 =
𝑙𝑜𝑔 (1 − 𝑝𝑒)

𝑙𝑜𝑔 (1 − 𝑤𝑁)
, 

(31) 

where 𝑘  is the necessary number of iterations, 𝑝𝑒  is the 

expected accuracy, 𝑤  is the inlier probability, and 𝑁 

denotes the number of hypothetical inliers. To accelerate the 

execution, we down-sample the input image to 640*480 to 

locate the relative region of the focal center. 

After some experiments, we found that st-LKOF works fine 

in detecting moving objects, especially for artificial objects and 

humans. St-LKOF was fast and accurate in detecting if the 

camera was moving; however, st-LKOF generated few optical 

flows and, as discussed previously, an image might contain 

optical flows associated with camera and object activities, 

making st-LKOF inaccurate in estimating the details of the 

camera's motion and zoom-in; in these cases, we suggest using 

d-LKOF instead. Empirically, the camera zoom-in resulted in 

many corresponding optical flows in cases based on d-LKOF, 

as illustrated in Figs. 2(a)-2(c). Therefore, 𝑤  and 𝑁  is 

respectively defined as 0.8 and 5 in this work, and the expected 

accuracy 𝑝𝑒 is set as 0.8.  

IV. EXPERIMENT AND ANALYSIS 

 The experiment was conducted with Python 3.9 and 

Ubuntu 22.04. We used NVIDIA GTX 3060 12G under an 

environment based on CUDA 11.8 and CUDNN 8.6.0 with a 

desktop computer based on Intel i-7 12700 and 32G RAM. In 

the experiments, we used three datasets of live video streams 

captured in Taiwan's famous scenic spots. The images of 

Shitiping and Dashshibi Hill in Hualien have been illustrated in 

Fig. 1. The images of Eryanping Trail and Taiping Suspension 

Bridge in Chiayi are provided by the Ministry of the Interior of 

Taiwan (MIoT) and are illustrated in Figs. 3(a) and 3(b), 

respectively. Sanxiantai and Duoliang Station are also famous 

scenic spots in Taitung; we respectively illustrated two images 

provided by MIoT in Figs. 3(c) and 3(d). Figs. 3(e)-3(h) 

illustrate examples of unfavorable scene situations; in this 

experiment, we classified these situations into rain, fog, haze, 

and bad illumination. The bad illumination included backlights, 

artificial illuminators, and color casts. We also introduced 

video streams captured on sunny days for comparison. The 

ratio between sunny days and each unfavorable situation was 

3:2. Besides, all the tested video streams were captured under 

the camera's activities, including camera motion (CM) and 

zoom-in (CZ). 

Note that each of the tested video streams exceeds 20 hours, 

but the duration of the camera activity loops is quite different 

and can be changed anytime. Calculating the number of correct 

images that could be captured in the tested video streams would 

be very difficult; therefore, we focused on the ability to collect 

 

(a) (b) (c) (d) 

  

(e) (f) (g) (h) 

Figure 3. (a)(b)(c)(d) images of Eryanping Trail, Taiping Suspension Bridge, Sanxiantai, and Duoliang Station, respectively; 

(e)(f)(g)(h) images of unfavorable scene conditions, including extra moving objects (human), thick fog, rainlets, and night with 

artificial illluminator. 
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images when the camera stopped. We counted the "correct 

images" obtained during days with several artificial or natural 

conditions. More specifically, tested video streams included 

rain, fog, haze, and sunny situations recorded on different days. 

We counted the correct images generated by tested methods to 

determine which were better to defend against unfavorable 

situations. Note also that we empirically set a time limitation of  

45 seconds between two shots to prevent capturing multiple 

images during camera stops. The tested algorithm included d-

LKOF, st-LKOF, GFOF, sparse Lucas-Kanade optical flow 

(s-LKOF), and robust local optical flow (RLOF) [38]. s-LKOF 

is a sparse version of d-LKOF aiming at fast implementation, 

and RLOF focuses on tracing long-range optical flows based 

on local features. 

All video streams associated with different natural 

environments were processed in the first step using optical flow 

algorithms. We calculated the number of images captured at 

the correct positions (when the camera stopped); this was 

performed according to (23). TABLE I demonstrates the 

experimental results. Accordingly, unfavorable environments 

degrade the performance of the tested optical algorithms, 

resulting in a decrease in correct images compared with 

situations on sunny days. Among tested unfavorable situations, 

inadequate illumination is the most critical obstacle when 

collecting our dataset. GFOF and RLOF are relatively weak in 

helping collect images at fixed positions for the tested optical 

flow algorithms. According to the results, GFOF and RLOF 

detect optical flows in a higher resolution, as illustrated in Figs. 

2(b), 2(c), 2(f), and 2(g). For example, note the grass regions at 

the left-bottom in Fig. 2(g); optical flows in the regions 

correctly reflect the movement of planets; however, this 

hinders the accuracy in estimating the camera zoom-in center 

because they are irrelevant to the camera zoom-in.  d-LKOF 

and s-LKOF perform with the best accuracy in defending 

unfavorable situations with a slightly higher computational cost; 

fortunately, this is acceptable because real-time processes are 

unnecessary when collecting image datasets. Last, the 

computational time of st-LKOF is speedy, making this 

algorithm capable of real-time processing; meanwhile, the 

performance is also satisfactory. Overall, when our method 

collaborates with d-LKOF, it produces correct images with 

only 21% losses in unfavorable situations compared with 

sunny days; this is a satisfactory ratio. 

We also evaluated the ability to estimate the camera's motion. 

At the bottom of TABLE I, we demonstrated the number of 

images captured at the correct positions. Note that the correct 

images were captured when the camera stopped from its 

motion or zoom-in. We compiled statistics to analyze camera 

activities before capturing these images. According to the 

results, our method is accurate; it can detect suitable camera 

activities in most cases because only a few instances were 

wrongly detected as the camera's motion and zoom-in 

simultaneously. 

V. CONCLUSIONS 

Data collection is an essential task of machine learning and 

artificial intelligence; however, this faces difficulty owing to 

natural or artificial issues, and fewer lectures focus on this. In this 

study, we proposed a framework to collect images at a fixed 

position; this is a beneficial technique for collecting image 

restoration datasets in which the ground truth and samples must 

be captured at fixed positions in different situations. In our 

framework, the orientation and focal center of the camera's 

motion and zoom-in can be accurately estimated; therefore, 

users can collect image samples with any online video streams 

at an efficient level. 

Our framework's worst case is collecting samples on rainy 

days, especially when the camera lens is full of rainlets, as 

demonstrated in Fig. 3(g). We figured out that the rainlet 

seriously interferes with our algorithm in long-shot situations 

(the camera uses a long focal to capture images). The main 

reason is that the rainlet and a long focal physically result in 

image blur, and the point spread function is hardly estimated. 

Therefore, we are currently focusing on analyzing the blueness 

pattern of the input image to improve accuracy on rainy days. 

TABLE I 

FULL-REFERENCE BENCHMARK RESULTS 

Location Dataset d-LKOF s-LKOF st-LKOF GFOF RLOF Average 

Taitung – 

Sanxiantai, 
Duoliang 

Station. 

Rain 42 38 31 22 16 29.8 

Fog and Haze 45 41 18 25 13 28.4 

Bad Illumination 28 29 15 28 15 23.0 

Sunny Day 114 121 101 78 58 94.4 

Hualien - 

Shitiping, 

Dashshibi 
Hill. 

Rain 37 38 32 18 13 27.6 

Fog and Haze 48 42 23 22 14 29.8 

Bad Illumination 32 35 21 27 9 24.8 

Sunny Day 135 141 97 74 46 98.6 

Chiayi - 
Eryanping 

Trail, Taiping 

Suspension 
Bridge. 

Rain 38 37 21 19 11 25.2 

Fog and Haze 41 42 17 18 13 26.2 

Bad Illumination 26 31 11 21 10 19.8 

Sunny Day 107 111 85 79 31 82.6 

Overall 

Ability 

At Correct Position 693 706 472 431 249 510.2 

CM detected 408 431 391 372 203 361.0 

CZ Center detected 297 282 97 65 48 157.8 

Mis-estimated 12 7 16 6 2 8.6 

The numbers of each field are the number of images either captured at the correct positions or meet the goals we demand. 
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