
 International Journal on Computer, Consumer and Control (IJ3C), Vol. 12, No.2 (2023)

 8

Acquire Fix-Point Images from Internet Video Stream Captured by

Moving Cameras under Bad Weather

Ping Juei Liu1* , Yu-Cheng Wang2

ABSTRACT

In this study, we propose and evaluate a fixed-point image-

acquiring framework to overcome adverse situations caused by

camera activities. Our method integrates optical flow

algorithms and random sample consensus (RANSAC) to

detect the orientation and focal center of the camera's motion

and zoom-in, respectively. Image restoration study is a typical

example facing data collection issues because the samples and

the ground truth must be captured at the same positions in

different situations, necessitating substantial human resources.

Therefore, automation and pre-processing are essential skills in

corresponding preliminary works. Our method helps collect

image restoration datasets in the experiments by analyzing the

24-hour online video stream. Corresponding results indicate

our method has satisfactory performance, resulting in only

21% accuracy loss in unfavorable natural and artificial

conditions compared with tasks processing on sunny days.

Keywords: Haze, Dehaze, Haze Removal, Coefficient

Optimization, Self-adaptive Coefficient, Contrastive Learning

I. INTRODUCTION

In the recent world, supervised machine learning has

become an emerging task; therefore, data involving particular

ontology were priceless for those emerging tasks and vendible

products. Data acquisition plays a vital role in developing

today's technology. Conventionally, data acquisition relied on

much staffing. Automation of data acquisition reduced costs

and eventually facilitated the progress of machine learning.

However, acquiring data from the real world was challenging,

even in the modern world with advanced equipment. Image

restoration was a vital field studying the recovery of impaired

images [1]. Image restoration was distinct from enhancement

tasks, aiming to eliminate adverse effects imposed on the scene

instead of enhancing brightness, contrast, or detailed features;

for example, the dehazing task proposed in [2]-[5]. The

comprehensive hazy dataset should involve impaired images

and corresponding ground truth captured in fixed positions

[6][7]. With the ground truth, researchers could train a model

by minimizing the error between the dehazed image and

ground truth; however, acquiring the comprehensive hazy

dataset remains a case-by-case challenge; it is usually time-

consuming and needs various techniques.

Lacking the comprehensive hazy dataset, some

researchers used synthesized datasets instead to train their

models. Li et al. proposed a hazy dataset [8] composed of real-

world images collected from the internet and used the real-

world images to synthesize hazy images. Zhang et al. proposed

a method to simulate various weather conditions; in this way,

they synthesized impaired images, including hazy and

sandstorm conditions [9]. Synthesized hazy datasets were the

remedy for the lack of a comprehensive hazy dataset with

sacrifices of proper performance because the simulation of the

natural environment was not promising.
There are two ways to build a comprehensive hazy dataset.

First, collecting images using the camera in fixed positions with

staffing is highly time-consuming because machine learning

takes many samples; meanwhile, adverse weather only

happens sometimes. Second, images can be collected online;

real-time video streaming is a common technique in developed

countries. The second method is relatively convenient because

some cameras are in fixed positions. For example, the Taiwan

government has conducted the open government platform

(OGP) [11] and deployed many cameras at tourist spots

[12][13], vital traffic places [14], and air-quality monitoring

stations [15]; these resources allow us to acquire data indoors

with computer programs; moreover, the cameras are deployed

in fixed positions and are capable of collecting images with the

change of weather.

Moving cameras was the first challenging problem in

building the comprehensive hazy dataset based on OGP and

caused many problems because the scene content, lighting, and

natural-environment features changed; this resulted in issues

when adjusting the camera parameters to adapt to the changes.

Therefore, moving camera issues were widely studied in

various research fields, such as online tracking [16], object

detection [17][18], and semantic parsing [19]. As previously

discussed, the comprehensive hazy dataset must contain hazy

and clear images (the ground truth), meaning cameras should

be static and have a fixed orientation; therefore, moving

cameras are problematic for capturing samples. Feature

matching is a fundamental technique that allows researchers to

find corresponding points between two images and calculate

*Corresponding Author: Ping Juei Liu (E-mail:immich0716@gmail.com).
1 Department of Artificial Intelligence and Engineer, National Chin-Yi

University of Technology, No.57, Sec. 2, Zhongshan Rd., Taiping Dist., Taichung
411030, Taiwan (R.O.C.).
2 Department of Computer Science and Information Engineering, National

Chin-Yi University of Technology, No.57, Sec. 2, Zhongshan Rd., Taiping Dist.,

Taichung 411030, Taiwan (R.O.C.).

 International Journal on Computer, Consumer and Control (IJ3C), Vol. 12, No.2 (2023)

 9

the movement of cameras. However, feature-matching

algorithms are various, and most take time; therefore, optical

flow algorithms [20][21] were widely used to avoid heavy

computation.

Gibson [20] provided the fundamentals of calculating the

object's shifting; various derivative algorithms were proposed

afterward. In computer vision, the features used to calculate the

optical flow comprised keypoints and their feature descriptors.

Keypoints pointed out where the features were, while their

feature descriptors described how to extract them. From the

perspective of feature descriptors, optical flow algorithms

based on low-level properties might save execution time

because feature descriptors take time, such as SIFT [22];

however, this resulted in another problem: the keypoints used

to calculate the optical flow might have very dense

distributions or take much time to calculate. Like other

algorithms, the optical flow algorithms needed help with a

trade-off between time complexity and accuracy; generally, the

gap in time complexity lay on feature descriptors and keypoint

distributions. As a result, optical flow algorithms were distinct

as dense, semi-dense, and sparse methods according to

keypoint distributions. The dense method considered all pixels

as keypoints. The semi-dense method involves only those

pixels having a gradient, and the sparse method extracts

keypoints using light-workload methods, such as corner

detection algorithms.

The most famous sparse method was called the Lucas-

Kanade optical flow (LKOF) [23]. LKOF assumed that

keypoints in the world were rigid or deformable, elastically

moving together coherently; therefore, LKOF looked for a

constant motion for a limited number of keypoints. Similarly,

the Kanade-Lucas-Tomasi feature tracker (KLT) [24][25] was

a semi-dense method, calculating ShiTomasi corner points [25]

and taking them as keypoints. Specifically, KLT pursued a

balance between execution time and accuracy. On the contrary,

Horn-Schunck optical flow (HSOF) was a dense method that

considered optical flow a smooth flow within a very short time

[26]; therefore, HSOF looked forward to a stable movement

within every pixel and its neighbors. HSOF was a robust

method that defined a smooth regularization term. With a

similar concept, G. Farneback et al. proposed an algorithm

(GFOF) [27] computing every pixel’s optical flow, which

results in a considerable computational workload but might

generate accurate estimations. The above-discussed algorithms

enabled the motion calculation from low-level (points or edges)

or high-level (features, objects) features in images.

On the other hand, the optical flow was based on the

assumption that the brightness of objects was invariant

everywhere; this means an assumption of uniform illumination

regardless of scene depth. As a result, changeable weather was

the second challenging problem, resulting in non-uniform

illumination and various disturbances. For example, the

weather in Taiwan's mountain area was famous for being

rapidly changed and unpredictable. Besides the haze and fog,

changeable weather was widely discussed in various study

fields, such as in the study of vehicle and saliency feature

detection [28][29]. Furthermore, rain could disturb optical

flow algorithms, causing rain streaks, veiling effects, and the

len droplet [30]. Collecting data in the natural environment was

challenging in complicated adverse situations.

II. RELATED WORKS

A. Optical Flow

Under the assumption of invariant brightness in the video

stream, the brightness of a pixel in a frame is as follows:

𝐼(𝑋, 𝑡) = 𝐼(𝑋 + 𝛿(𝑋, 𝑡 + ∆𝑡)), (1)

where 𝐼 denotes frames in the same video stream, 𝑋

denotes the 𝑥 and 𝑦 coordinates of the center of the region

of interest (ROI), and 𝛿 was called the replacement, meaning

the coordinate change and was related to previous coordinates

𝑋 and time changes ∆𝑡. The problem of the model is that the

coordinate was self-correlated and sometimes violated because

of occluding boundaries, hugely changed color, or surface

brightness changes; this resulted in different flows within ROI.

Moreover, when a tracked object went out of the windows and

returned, the accuracy of LKOF was doubtful as reported in

[31] by Shi et al. Shi et al. discussed the situation and proposed

a new model, including an affine matrix in the replacement, as

follows:

𝛿 = 𝐷𝑋 + 𝑑, (2)

where 𝐷 was the affine matrix describing the deformability

as follows:

𝐷 = [
𝑑𝑥𝑥 𝑑𝑥𝑦

𝑑𝑦𝑥 𝑑𝑦𝑦
],

(3)

and 𝑑 was the translation. Therefore, the motion was

simplified as a simple matrix form as follows:

𝐼(𝑋) = 𝐼(𝐴𝑋 + 𝑑), (4)

where 𝐴 was defined as follows:

𝐴 = 1 + 𝐷. (5)

Note that 𝟏 denoted an identical matrix of 𝑅2×2. In this way,

Shi et al. successfully improve the performance of tracking

objects. However, this model needs a solver to resolve a 6x6

matrix system iteratively, which takes much time. To balance

the accuracy and execution time, Shi et al. conducted

experiments to decide the best combination of the two models;

eventually suggested using (4) to track objects and LKOF to

estimate the camera motion.

LKOF model simplified 𝛿 to the fixed translation of all

keypoints to achieve faster execution and flexibility. The

LKOF model was as follows:

𝐼(𝑋) = 𝐼(𝑋 + 𝑑), (6)

where 𝑑 denoted the translation. The LKOF model was

widely used because it worked accurately with a very small

ROI or even a keypoint. To analyze the relation associated with

the motion, the Taylor series of (6) is necessary, as follows:

𝐼(𝑋 + 𝑑) ≈ 𝐼(𝑋) +
𝜕𝐼(𝑋)

𝜕𝑥
𝑑𝑥 +

𝜕𝐼(𝑋)

𝜕𝑦
𝑑𝑦

+
𝜕𝐼(𝑋)

𝜕𝑡
𝑑𝑡 .

(7)

The above equation was truncated by ignoring the higher oder

terms, resulting in a linear model. By the assumption of

invariant brightness, (7) should lead to the following:

𝜕𝐼(𝑋)

𝜕𝑥
𝑑𝑥 +

𝜕𝐼(𝑋)

𝜕𝑦
𝑑𝑦 +

𝜕𝐼(𝑋)

𝜕𝑡
𝑑𝑡 ≈ 0.

(8)

 International Journal on Computer, Consumer and Control (IJ3C), Vol. 12, No.2 (2023)

 10

To obtain the velocity 𝑉, both side in (8) were divided by 𝑑𝑡,

generating the following:

𝜕𝐼(𝑋)

𝜕𝑥
𝑉𝑥 +

𝜕𝐼(𝑋)

𝜕𝑦
𝑉𝑦 ≈ −

𝜕𝐼(𝑋)

𝜕𝑡
.

(9)

In an image, the derivative could be replaced with the gradient

operator; therefore, the optical flow was written in the matrix

form as follows:

[𝛻𝑥, 𝛻𝑦] [
𝑉𝑥

𝑉𝑦
] ≈ −𝛻𝑡 ,

(10)

where 𝛻𝑥, 𝛻𝑦, and 𝛻𝑡 respectively indicated the gradient of

𝑥 axis, 𝑦 axis, and time. In video frames, (10) usually led to

the overdetermined situation if keypoints were sufficient;

therefore, using the least square method could quickly solve the

optimal estimation of 𝑉𝑥 and 𝑉𝑦 . Specifically, LKOF

suggested using weighted least square and iteratively selecting

keypoints to optimize 𝑉𝑥 and 𝑉𝑦, and the details of (10) were

as follows:

[

𝛻𝑥1
𝛻𝑦1

… …
𝛻𝑥𝑛

𝛻𝑦𝑛

] [
𝑤1 … 0
… … …
0 … 𝑤𝑛

] [
𝑉𝑥1

… 𝑉𝑥𝑛

𝑉𝑦1
… 𝑉𝑦𝑛

]

≈ −[𝛻𝑡1
… 𝛻𝑡𝑛],

(11

)

where 𝑛 denoted the number of keypoints, and 𝑤𝑛 was the

weight. Note that 𝑤𝑛 formed a diagonal matrix and was

usually negatively proportional to the distance from the ROI

center.

B. Shi-Tomas Corner

Shi-Tomas corner detector [24][25] was an evolution

version of the Harris corner detector [32]. Harris et al. figured

out that compared with other situations, patches containing any

corner structure had considerable dissimilarity when they

shifted to any orientation; this resulted in a formula to detect

corner points by calculating the dissimilarity, as follows:

𝜖 = ∑ 𝑤𝑠(𝐼(𝑋) − 𝐼(𝑋 − 𝑑))2

𝑋

,
(12)

where 𝑤𝑠 was the weight. Similar to the derivation from (6)

to (7), we could linearize the later part of the equation based on

the Taylor series, and the result was as follows:

𝐼(𝑋 − 𝑑) ≈ 𝐼(𝑋) +
𝜕𝐼(𝑋)

𝜕𝑥
𝑑𝑥 +

𝜕𝐼(𝑋)

𝜕𝑦
𝑑𝑦 .

(13)

Note that there was no 𝑑𝑦 because this happened in a single

image, and the derivative could be replaced with the gradient

operator in images. Therefore, substituting (13) to (12)

generated the following:

𝜖 ≈ ∑ 𝑤𝑠

𝑋

(𝛻𝑥𝑑𝑥 + 𝛻𝑦𝑑𝑦)
2

.
(14)

Therefore, this generated the quadratic equation of matrix form,

as follows:

𝜖 ≈ [𝑑𝑥 , 𝑑𝑦]𝑀 [
𝑑𝑥

𝑑𝑦
],

(15)

where the matrix 𝑀 was a self-correlated matrix, defined as

follows:

𝑀 = [
(𝛻𝑥)2 𝛻𝑥𝛻𝑦

𝛻𝑦𝛻𝑥 (𝛻𝑦)2].
(16)

Harris et al. suggest using a surrogate benchmark to estimate

corner points as follows:

𝑅 = 𝑑𝑒𝑡𝑀 − 𝛼 ∗ 𝑡𝑟𝑎𝑐𝑒(𝑀)2, (17)

where 𝑅 is the surrogate benchmark, and 𝛼 is a coefficient

to weight the trace.

However, the surrogate benchmark sometimes caused

problems, resulting in accuracy decay. Shi et al. explained that

Harris’s equation in (17) is highly related to 𝜆𝑛 because of the

following:

𝑑𝑒𝑡𝑀 = 𝜆1 ∗ 𝜆2, (18)

and the trace was as follows:

𝑡𝑟𝑎𝑐𝑒(𝑀) = 𝜆1 + 𝜆2. (19)

However, the quadratic equation was the elliptic function,

and the eigenvalue 𝜆𝑛 of the self-correlated matrix 𝑀

denoted the texture changes in different axes of the elliptic. Shi

et al. correlated 𝜆𝑛 to the texture and concluded three cases.

Two small 𝜆𝑛 indicated the constant intensity profile of

texture patterns, and a large 𝜆𝑛 and a small 𝜆𝑛 show the

unidirectional texture pattern. Two large 𝜆𝑛 strongly

suggested corner points, salt-and-pepper noises, or other

reliable features; therefore, good features were highly

associated with 𝜆𝑛. Accordingly, they defined the following

to obtain 𝑅:

𝑅 = 𝑚𝑖𝑛(𝜆1, 𝜆2). (20)

This way, when 𝑅 was larger than a given thresholding, it

meant there was a reliable corner point.

C. Video Stream

The OGP system is built on the YouTube platform based

on various streaming techniques. The HTTP live streaming

(HLS) [35] is the most popular streaming protocol owing to

Apple’s support; however, it only supports H.264 and H.265.

On the other hand, real-time messaging protocol (RTMP) is

also a widely used protocol [34], which Adobe provides.

Besides, the dynamic adaptive streaming over HTTP (DASH)

accepts various media formats. Unlike the progressive stream,

HLS, RTMP, and DASH allow clients to extract a single type

of multiple video streams with better quality at a fixed bit rate;

therefore, techniques to transfer the media information are

essential. HLS clients acquire media information through a

descriptor called the MP3 URL (M3U); this is a text format file,

and M3U8 supports UTF-8. On the other hand, DASH uses

the media presentation description (MPD), and MPD is built in

XML format (also with UTF-8 support). MPD specification is

defined by ISO/IEC 23009-1 [35]; therefore, DASH is also

known as MPEG-DASH.

M3U8 and MPD are crucial techniques; precisely, after

requesting a resource existing in the HTTP server, the HTTP

server separates the resource into segments and writes the

metadata as M3U8 and MPD. Clients can acquire the resource

by appropriate HTTP-URLs. The most important part of the

M3U8 and MPD is the MIME information, which tells clients

how to process the file according to the type. This study used

the Vidgear package to analyze MPD and acquire the

necessary video stream from YouTube. Afterward, we use

Python to detect the camera motion, address specific scenes,

collect image samples, and construct a comprehensive hazy

dataset for further study.

III. THE PROPOSED METHOD

 International Journal on Computer, Consumer and Control (IJ3C), Vol. 12, No.2 (2023)

 11

A. Problem Address and Our Goal

After some surveys and two months of field operation, we

figured out that the difficulty of building a comprehensive hazy

dataset based on OGP was the changeable natural environment

and camera activities; among them, the natural environment

issues include the following:

 Noises

 Hazy and Fog Effects

 Rain Effects

 Weather Changes

 Backlight

We illustrated some cases related to the abovementioned

problems in Fig. 1. Figs. 1(a) and 1(b) demonstrate images

captured under good weather at different times, and the color

tones of the two images are different because of the sun’s

position. Figs 1(c) and 1(d) show images captured at similar

times but are captured under haze and fog conditions,

respectively. The gradient of the two images is relatively weak,

and distant objects in the two images are unclear or missing.

Moreover, the camera activities also caused some problems,

including:

 Camera Motion

 Camera Zoom-in

 Len Rainlets

 Len condensation

Fig 1(e) illustrates a sea-view image captured under good

weather, and the color tone is much closer to the canonical

illumination. In the evening, the scattered sunlight seriously

affected the sea view; therefore, the color tone is hugely biased,

as illustrated in Fig. 1(f). On the other hand, Fig 1(g) is an

example of the camera facing backlight problems in the

morning; the backlight is too strong in some places, so the

algorithm hardly works. Finally, we illustrated an image

captured when the camera lens was covered with rainlets; this

results in the distortion of objects, especially when the camera

is zooming in or taking a long shot.

Natural environments and camera activities can hinder the

estimation of optical flows; this is the first issue we must

address. Besides, according to the documents officially given

by YouTube [36], the recommended bitrate of the 1080p 30fps

image is 10 Mbps. Empirically, video in this format can work

smoothly with a bitrate from 5 to 10 Mbps; therefore, the

optical flow algorithm should take no longer than 0.033

seconds to deal with two frames in the real-time video stream;

however, the fast implementation might result in accuracy

degradation. To balance the execution time and accuracy, we

discard traditional benchmarks, trying to design a method that

can fetch the maximal correct image (meaning the camera

faces the same direction with a fixed focal length and angles).

Meanwhile, OGP comprises various scenes, including

natural (sea, mountain, lake, …) and artificial (building,

highway, bridge, …) scenes. The texture of distinct objects

differs, meaning the keypoints extraction is essential. The

problem is difficult to resolve by a single algorithm; therefore,

we must test and integrate various algorithms to succeed in our

task.

B. Detect Camera's Motion

Note that our goal is to get images captured at the same

position with the same camera angles to succeed in image

restoration training. Unlike conventional optical flow

frameworks, we aim to detect camera activities like motion and

zoom-in. We used the CamGear library in the VidGear

package [37] to fetch the video stream from YouTube. To

accelerate the process, we wrote a multithreading program to

initialize a new thread to make the request and awaited the

response from YouTube while the main thread dealt with the

optical flow algorithms.

Camera motion is much easier to detect because all the

keypoints should have the same optical flow at a short period

except for those moving keypoints, as illustrated at the top in

Fig. 2. Fig. 2(a)-(d) illustrates the rest ledge scene. At that time,

the camera moved from the right to the left, resulting in objects'

optical flows to the right, as demonstrated in red arrows. In this

case, a simple consensus election voted by all keypoints can

quickly reveal the camera's motion. First, we calculate the

36

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. The situation related to the camera, scenes, weather, and sun conditions. (a). distant-view image captured at 7:00 with clear

air; (b). distant-view image captured at 7:40 with clear air; (c). distant-view image captured under haze conditions at 7:00; (d) distant-

view image captured under thick fog at 8:00; (e). sea-view image captured at 10:00 with clear air; (f). sea-view image captured in

the morning with backlight; (h). sea-view image captured at 15:00 and covered with the color cast; (g). sea-view image captured at

11:00, covered with rainlets, and suffered from camera motions.

 International Journal on Computer, Consumer and Control (IJ3C), Vol. 12, No.2 (2023)

 12

magnitudes of all optical flow to collect a keypoint set

composed of keypoints whose optical flow magnitudes exceed

thresholding, as follows:

𝑘 = { 𝑛 | ‖𝑣⃗𝑛‖ > 𝑡𝑚}, (21)

where 𝑘 is the keypoint set, 𝑣⃗𝑛 denotes the optical flow of

keypoint 𝑛, and 𝑡𝑚 is the thresholding associated with the

magnitude of 𝑣⃗𝑛. After that, we calculate the orientation of

𝑣⃗𝑘 and denote the orientation as 𝜃𝑣⃗⃗𝑘
; after that, we form a

histogram based on 𝜃𝑣⃗⃗𝑘
 to find the bin having the maximal

number of keypoints, as follows:

𝑎𝑟𝑔 𝑚𝑎𝑥𝑐 𝐻(𝜃𝑣⃗⃗𝑘
, 𝑐), (22)

where 𝐻 denotes the histogram returning the number of

elements in the bin 𝑐. In this way, we find the consensus most

extensive supported by 𝑉 and ensure the camera's motion by

giving lower-bound thresholding to 𝐻(𝜃𝑣⃗⃗𝑘
, 𝑐) , and the

lower-bound thresholding 𝑡𝑛 is defined as follows:

𝑡𝑛 = 0.5 ∗ 𝐶𝑎𝑟𝑑(𝑘). (23)

We tested corresponding scenes with LKOF based on dense

keypoints (d-LKOF) and Shi-Tomas corner detector (st-

LKOF), figuring out that st-LKOF seemed weak to deal with

the camera motion based on (22). Fig. 2(a)-2(c) illustrates d-

LKOF results. The number of valid keypoints is sufficient to

implement the consensus election which generates accurate

results; on the other hand, st-LKOF generates fewer valid

keypoints, making the result relatively unstable, as illustrated in

Fig. 2(d). The color arrows in the images point out the direction

related to 𝜃𝑣⃗⃗𝑘
. Meanwhile, we represent the orientation with

the HSV Hue channel, and the definition is as follows:

 𝐻ℎ𝑠𝑣 = 360° ∗ 𝜃𝑣⃗⃗𝑘
𝜋⁄ . (24)

C. Detect Camera Zoom-in

We looked into a more complicated case concerning camera

zoom-in, as illustrated at the bottom of Fig 2. The vector field

of 𝑣⃗𝑘 in Figs. 2(e)-2(g) distribute tidily, and all of 𝑣⃗𝑘 come

from the same source located at the left-bottom of the scene;

this leads to the fact that lines forming by 𝑣⃗𝑘 are concurrent,

meaning that the lines share a common point. We denote the

lines formed by 𝑣⃗𝑘 and the common point 𝑝 as 𝐿𝑣⃗⃗𝑘,𝑝 .

Accordingly, 𝐿𝑣⃗⃗𝑘,𝑝 is defined as follows:

𝑦𝑘 − 𝑝𝑦 =
𝑎𝑘

𝑏𝑘

(𝑥𝑘 − 𝑝𝑥),
(25)

where 𝑥𝑘 and 𝑦𝑘 respectively denote the coordinator of

𝐿𝑣⃗⃗𝑘,𝑝 concerning 𝑥 and 𝑦 axes; 𝑝𝑥 and 𝑝𝑦 denote the

coordinator of the common point 𝑝; 𝑎𝑘 and 𝑏𝑘 denote the

components of 𝑣⃗𝑘 concerning 𝑥 and 𝑦 axes, respectively.

However, the formula represents the ideal concurrent system;

we can check the optimal common points 𝑝 from lines

formed by 𝑣⃗𝑘 (denoted as 𝐿𝑣⃗⃗𝑘
), and the generic formula of

𝐿𝑣⃗⃗𝑘
 is as follows:

𝑏𝑘𝑦𝑘 − 𝑎𝑘𝑥𝑘 + 𝑐𝑘 = 0, (26)

where 𝑐𝑘 denotes a constant. Since 𝑝 is not fully compatible

to the ideal concurrent system, we can calculate the distance

between 𝑝 and 𝐿𝑣⃗⃗𝑘
 to estimate errors, as follows:

𝑑(𝑝, 𝐿𝑣⃗⃗𝑘
) =

|𝑏𝑘𝑝𝑦 − 𝑎𝑘𝑝𝑥 + 𝑐𝑘|

(𝑎𝑘
2 + 𝑏𝑘

2)1/2
,

(27)

where 𝑑() denotes a function returning the distance between

two inputs. Therefore, we conclude that 𝑝 can be solved by

minimizing an energy term defined as follows:

𝑎𝑟𝑔 𝑚𝑖𝑛𝑝 ∑ 𝑑(𝑝, 𝐿𝑣⃗⃗𝑘
)

𝑘

.
(28)

However, optimizing (28) directly is unrealistic because of

the absolute value symbol; this makes the equation non-linear

and cannot be solved based on quadratic optimization. To

eliminate the effect of the absolute value symbol, we rewrite

(28) as follows:

𝑎𝑟𝑔 𝑚𝑖𝑛𝑝 ∑ 𝑑(𝑝, 𝐿𝑣⃗⃗𝑘
)

2

𝑘

.
(29)

Therefore, we obtain the following:

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2. (a)(b)(c) images of a rest ledge scene captured with the camera's motion; the arrow indicates the orientation of the d-LKOF,

GFOF, and RLOF; (d) image of the same scene; the color lines indicate the optical flow generated by st-LKOF, and the keypoints

are less than those sparse to dense methods; (e)(f)(g) images of a mountain view captured with camera zoom-in; the arrow indicates

the orientation of the d-LKOF, GFOF, and RLOF; (h) image of the same scene; the color lines indicates the optical flow generated

by st-LKOF, and the optical flow are related to both camera zoom-in and cloud's movements.

 International Journal on Computer, Consumer and Control (IJ3C), Vol. 12, No.2 (2023)

 13

𝑎𝑟𝑔 𝑚𝑖𝑛𝑝 ∑
(−𝑏𝑘𝑝𝑦 + 𝑎𝑘𝑝𝑥 − 𝑐𝑘)2

𝑎𝑘
2 + 𝑏𝑘

2

𝑘

.
(30)

Note that this means fitting a linear model concerning 𝑝 with

the output 𝑐𝑘 while 𝑐𝑘 can be computed from 𝑣⃗𝑘 with

𝑎𝑘 , 𝑏𝑘 , and one of its endpoints. Unfortunately, finding

optimal common points based on the regression remains

unrealistic. Moving objects can affect some optical flows,

making these optical flows irrelevant to camera zoom-in and

becoming outliers. For example, the cloud moves because of

the wind, as shown in Figs. 2(e)-2(g), and the corresponding

optical flows have distinct orientations compared with those

only affected by the camera's motion. Note the left-top region

in Figs. 2(e)-2(g) exhibits many outliners; this could disable

any regression estimator.

Concerning the above-mentioned issues, we use the random

sample consensus (RANSAC) to estimate 𝑝. First, we choose

several hypothetical inliers from keypoints in 𝑉 and fit the

hypothetical inliers based on (30). Second, we evaluate other

keypoints with the fitted model to form the consensus set

composed of keypoints whose errors are acceptable. Finally, if

the number of the consensus set is enough, the model is

accepted; otherwise, we restart from the first step. In this way,

we can estimate the focal center of the camera zoom-in activity

with 𝑝. The necessary number of iterations of RANSAC can

be calculated with the empirical inlier probability and the

expected accuracy, defined as follows:

𝑘 =
𝑙𝑜𝑔 (1 − 𝑝𝑒)

𝑙𝑜𝑔 (1 − 𝑤𝑁)
,

(31)

where 𝑘 is the necessary number of iterations, 𝑝𝑒 is the

expected accuracy, 𝑤 is the inlier probability, and 𝑁

denotes the number of hypothetical inliers. To accelerate the

execution, we down-sample the input image to 640*480 to

locate the relative region of the focal center.

After some experiments, we found that st-LKOF works fine

in detecting moving objects, especially for artificial objects and

humans. St-LKOF was fast and accurate in detecting if the

camera was moving; however, st-LKOF generated few optical

flows and, as discussed previously, an image might contain

optical flows associated with camera and object activities,

making st-LKOF inaccurate in estimating the details of the

camera's motion and zoom-in; in these cases, we suggest using

d-LKOF instead. Empirically, the camera zoom-in resulted in

many corresponding optical flows in cases based on d-LKOF,

as illustrated in Figs. 2(a)-2(c). Therefore, 𝑤 and 𝑁 is

respectively defined as 0.8 and 5 in this work, and the expected

accuracy 𝑝𝑒 is set as 0.8.

IV. EXPERIMENT AND ANALYSIS

 The experiment was conducted with Python 3.9 and

Ubuntu 22.04. We used NVIDIA GTX 3060 12G under an

environment based on CUDA 11.8 and CUDNN 8.6.0 with a

desktop computer based on Intel i-7 12700 and 32G RAM. In

the experiments, we used three datasets of live video streams

captured in Taiwan's famous scenic spots. The images of

Shitiping and Dashshibi Hill in Hualien have been illustrated in

Fig. 1. The images of Eryanping Trail and Taiping Suspension

Bridge in Chiayi are provided by the Ministry of the Interior of

Taiwan (MIoT) and are illustrated in Figs. 3(a) and 3(b),

respectively. Sanxiantai and Duoliang Station are also famous

scenic spots in Taitung; we respectively illustrated two images

provided by MIoT in Figs. 3(c) and 3(d). Figs. 3(e)-3(h)

illustrate examples of unfavorable scene situations; in this

experiment, we classified these situations into rain, fog, haze,

and bad illumination. The bad illumination included backlights,

artificial illuminators, and color casts. We also introduced

video streams captured on sunny days for comparison. The

ratio between sunny days and each unfavorable situation was

3:2. Besides, all the tested video streams were captured under

the camera's activities, including camera motion (CM) and

zoom-in (CZ).

Note that each of the tested video streams exceeds 20 hours,

but the duration of the camera activity loops is quite different

and can be changed anytime. Calculating the number of correct

images that could be captured in the tested video streams would

be very difficult; therefore, we focused on the ability to collect

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. (a)(b)(c)(d) images of Eryanping Trail, Taiping Suspension Bridge, Sanxiantai, and Duoliang Station, respectively;

(e)(f)(g)(h) images of unfavorable scene conditions, including extra moving objects (human), thick fog, rainlets, and night with

artificial illluminator.

 International Journal on Computer, Consumer and Control (IJ3C), Vol. 12, No.2 (2023)

 14

images when the camera stopped. We counted the "correct

images" obtained during days with several artificial or natural

conditions. More specifically, tested video streams included

rain, fog, haze, and sunny situations recorded on different days.

We counted the correct images generated by tested methods to

determine which were better to defend against unfavorable

situations. Note also that we empirically set a time limitation of

45 seconds between two shots to prevent capturing multiple

images during camera stops. The tested algorithm included d-

LKOF, st-LKOF, GFOF, sparse Lucas-Kanade optical flow

(s-LKOF), and robust local optical flow (RLOF) [38]. s-LKOF

is a sparse version of d-LKOF aiming at fast implementation,

and RLOF focuses on tracing long-range optical flows based

on local features.

All video streams associated with different natural

environments were processed in the first step using optical flow

algorithms. We calculated the number of images captured at

the correct positions (when the camera stopped); this was

performed according to (23). TABLE I demonstrates the

experimental results. Accordingly, unfavorable environments

degrade the performance of the tested optical algorithms,

resulting in a decrease in correct images compared with

situations on sunny days. Among tested unfavorable situations,

inadequate illumination is the most critical obstacle when

collecting our dataset. GFOF and RLOF are relatively weak in

helping collect images at fixed positions for the tested optical

flow algorithms. According to the results, GFOF and RLOF

detect optical flows in a higher resolution, as illustrated in Figs.

2(b), 2(c), 2(f), and 2(g). For example, note the grass regions at

the left-bottom in Fig. 2(g); optical flows in the regions

correctly reflect the movement of planets; however, this

hinders the accuracy in estimating the camera zoom-in center

because they are irrelevant to the camera zoom-in. d-LKOF

and s-LKOF perform with the best accuracy in defending

unfavorable situations with a slightly higher computational cost;

fortunately, this is acceptable because real-time processes are

unnecessary when collecting image datasets. Last, the

computational time of st-LKOF is speedy, making this

algorithm capable of real-time processing; meanwhile, the

performance is also satisfactory. Overall, when our method

collaborates with d-LKOF, it produces correct images with

only 21% losses in unfavorable situations compared with

sunny days; this is a satisfactory ratio.

We also evaluated the ability to estimate the camera's motion.

At the bottom of TABLE I, we demonstrated the number of

images captured at the correct positions. Note that the correct

images were captured when the camera stopped from its

motion or zoom-in. We compiled statistics to analyze camera

activities before capturing these images. According to the

results, our method is accurate; it can detect suitable camera

activities in most cases because only a few instances were

wrongly detected as the camera's motion and zoom-in

simultaneously.

V. CONCLUSIONS

Data collection is an essential task of machine learning and

artificial intelligence; however, this faces difficulty owing to

natural or artificial issues, and fewer lectures focus on this. In this

study, we proposed a framework to collect images at a fixed

position; this is a beneficial technique for collecting image

restoration datasets in which the ground truth and samples must

be captured at fixed positions in different situations. In our

framework, the orientation and focal center of the camera's

motion and zoom-in can be accurately estimated; therefore,

users can collect image samples with any online video streams

at an efficient level.

Our framework's worst case is collecting samples on rainy

days, especially when the camera lens is full of rainlets, as

demonstrated in Fig. 3(g). We figured out that the rainlet

seriously interferes with our algorithm in long-shot situations

(the camera uses a long focal to capture images). The main

reason is that the rainlet and a long focal physically result in

image blur, and the point spread function is hardly estimated.

Therefore, we are currently focusing on analyzing the blueness

pattern of the input image to improve accuracy on rainy days.

TABLE I

FULL-REFERENCE BENCHMARK RESULTS

Location Dataset d-LKOF s-LKOF st-LKOF GFOF RLOF Average

Taitung –

Sanxiantai,
Duoliang

Station.

Rain 42 38 31 22 16 29.8

Fog and Haze 45 41 18 25 13 28.4

Bad Illumination 28 29 15 28 15 23.0

Sunny Day 114 121 101 78 58 94.4

Hualien -

Shitiping,

Dashshibi
Hill.

Rain 37 38 32 18 13 27.6

Fog and Haze 48 42 23 22 14 29.8

Bad Illumination 32 35 21 27 9 24.8

Sunny Day 135 141 97 74 46 98.6

Chiayi -
Eryanping

Trail, Taiping

Suspension
Bridge.

Rain 38 37 21 19 11 25.2

Fog and Haze 41 42 17 18 13 26.2

Bad Illumination 26 31 11 21 10 19.8

Sunny Day 107 111 85 79 31 82.6

Overall

Ability

At Correct Position 693 706 472 431 249 510.2

CM detected 408 431 391 372 203 361.0

CZ Center detected 297 282 97 65 48 157.8

Mis-estimated 12 7 16 6 2 8.6

The numbers of each field are the number of images either captured at the correct positions or meet the goals we demand.

 International Journal on Computer, Consumer and Control (IJ3C), Vol. 12, No.2 (2023)

 15

REFERENCES

[1] P. Narayanan et al., "A Multi-Purpose Realistic Haze

Benchmark With Quantifiable Haze Levels and

Ground Truth," in IEEE Transactions on Image

Processing, vol. 32, pp. 3481-3492, 2023, doi:

10.1109/TIP.2023.3245994.

[2] H. Dong et al., "Multi-Scale Boosted Dehazing

Network With Dense Feature Fusion," 2020

IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), 2020, pp. 2154-2164, doi:

10.1109/CVPR42600.2020.00223.

[3] X. Liu, H. Li and C. Zhu, "Joint Contrast Enhancement

and Exposure Fusion for Real-World Image

Dehazing," in IEEE Transactions on Multimedia, doi:

10.1109/TMM.2021.3110483.

[4] P. L. Suárez, D. Carpio, A. D. Sappa and H. O. Velesaca,

"Transformer based Image Dehazing," 2022 16th

International Conference on Signal-Image Technology

& Internet-Based Systems (SITIS), Dijon, France, 2022,

pp. 148-154, doi: 10.1109/SITIS57111.2022.00037.

[5] S. C. Agrawal and A. S. Jalal, "Dense Haze Removal

by Nonlinear Transformation," in IEEE Transactions

on Circuits and Systems for Video Technology, vol. 32,

no. 2, pp. 593-607, Feb. 2022, doi:

10.1109/TCSVT.2021.3068625.

[6] C. O. Ancuti, C. Ancuti, R. Timofte and C. D.

Vleeschouwer, "I-HAZE: a dehazing benchmark with

real hazy and haze-free indoor images,"

arXiv:1804.05091v1, 2018

[7] Ancuti, C.O., Ancuti, C., Timofte, R., & Vleeschouwer,

C.D. (2018). O-HAZE: A Dehazing Benchmark with

Real Hazy and Haze-Free Outdoor Images. 2018

IEEE/CVF Conference on Computer Vision and

Pattern Recognition Workshops (CVPRW), 867-8678.

[8] B. Li, W. Ren, D. Fu, D. Tao, D. Feng, W. Zeng, and Z.

Wang, “Benchmarking single-image dehazing and

beyond,” in IEEE Transactions on Image Processing,

vol. 28, no. 1, pp. 492-505, Jan. 2019.

[9] L. Zhang, A. Zhu, S. Zhao and Y. Zhou, "Simulation of

Atmospheric Visibility Impairment," in IEEE

Transactions on Image Processing, vol. 30, pp. 8713-

8726, 2021, doi: 10.1109/TIP.2021.3120044.

[10] Y. Zhou, Y. Han and P. Zhou, "Rain removal in videos

based on optical flow and hybrid properties constraint,"

2015 Seventh International Conference on Advanced

Computational Intelligence (ICACI), Wuyi, China,

2015, pp. 143-147, doi: 10.1109/ICACI.2015.7184765.

[11] https://data.gov.tw/

[12] https://monitor.wfuapp.com/

[13] https://www.gov.tw/taiwan/

[14] https://ocam.live/index.php?route=product/category&p

ath=122

[15] https://airtw.epa.gov.tw/cht/EnvMonitoring/Central/Sit

ePhoto.aspx

[16] Y. Liu and X. Granier, "Online Tracking of Outdoor

Lighting Variations for Augmented Reality with

Moving Cameras," in IEEE Transactions on

Visualization and Computer Graphics, vol. 18, no. 4, pp.

573-580, April 2012, doi: 10.1109/TVCG.2012.53.

[17] Y. Wu, X. He and T. Q. Nguyen, "Moving Object

Detection With a Freely Moving Camera via

Background Motion Subtraction," in IEEE

Transactions on Circuits and Systems for Video

Technology, vol. 27, no. 2, pp. 236-248, Feb. 2017, doi:

10.1109/TCSVT.2015.2493499.

[18] J. Chen, K. Zhang, B. Jia and Y. Gao, "Identification of

a Moving Object's Velocity and Range With a Static-

Moving Camera System," in IEEE Transactions on

Automatic Control, vol. 63, no. 7, pp. 2168-2175, July

2018, doi: 10.1109/TAC.2017.2755988.

[19] A. López-Cifuentes, M. Escudero-Viñolo and J. Bescós,

"Automatic Semantic Parsing of the Ground Plane in

Scenarios Recorded With Multiple Moving Cameras,"

in IEEE Signal Processing Letters, vol. 25, no. 10, pp.

1495-1499, Oct. 2018, doi:

10.1109/LSP.2018.2865833.

[20] J.J. Gibson, "The Perception of the Visual World.

Houghton Mifflin, " 1950 .

[21] K.P. Horn and B. Sunck, "Determining optical flow,"

Artificial Intelligence, 1981, doi:10.1016/0004-

3702(81)90024-2. hdl:1721.1/6337.

[22] D. G. Lowe, "Object recognition from local scale-

invariant features," Proceedings of the Seventh IEEE

International Conference on Computer Vision, Kerkyra,

Greece, 1999, pp. 1150-1157 vol.2, doi:

10.1109/ICCV.1999.790410.

[23] B. D. Lucas and T. Kanade, "An iterative image

registration technique with an application to stereo

vision," Proceedings of Imaging Understanding

Workshop, 1981, pages 121-130

[24] C. Tomasi and T. Kanade, "Detection and Tracking of

Point Features, " Carnegie Mellon University Technical

Report CMU-CS-91-132, April 1991.

[25] J. Shi and C. Tomasi, "Good Features to Track, " IEEE

Conference on Computer Vision and Pattern

Recognition, pages 593–600, 1994.

[26] B.K.P. Horn and B.G. Schunck, "Determining optical

flow." Artificial Intelligence, vol 17, pp 185–203, 1981.

[27] G. Farneback, "Two-Frame Motion Estimation Based

on Polynomial Expansion, " J. Lect. Notes Comput. Sci,

363–370, 2003, https:// doi. org/ 10. 1007/3- 540-

45103-X_ 50.

[28] Y. Wang, "Joint Random Field Model for All-Weather

Moving Vehicle Detection," in IEEE Transactions on

Image Processing, vol. 19, no. 9, pp. 2491-2501, Sept.

2010, doi: 10.1109/TIP.2010.2048970.

[29] A. Singha and M. K. Bhowmik, "Salient Features for

Moving Object Detection in Adverse Weather

Conditions During Night Time," in IEEE Transactions

on Circuits and Systems for Video Technology, vol. 30,

no. 10, pp. 3317-3331, Oct. 2020, doi:

10.1109/TCSVT.2019.2926164.

[30] R. Li, R. Tan, L. F. Cheong, A. Aviles-Rivero, Q. Fan

and C. Schoenlieb, "RainFlow: Optical Flow Under

Rain Streaks and Rain Veiling Effect," 2019 IEEE/CVF

International Conference on Computer Vision (ICCV),

Seoul, Korea (South), 2019, pp. 7303-7312, doi:

10.1109/ICCV.2019.00740.

https://data.gov.tw/
https://monitor.wfuapp.com/
https://www.gov.tw/taiwan/
https://ocam.live/index.php?route=product/category&path=122
https://ocam.live/index.php?route=product/category&path=122
https://airtw.epa.gov.tw/cht/EnvMonitoring/Central/SitePhoto.aspx
https://airtw.epa.gov.tw/cht/EnvMonitoring/Central/SitePhoto.aspx

 International Journal on Computer, Consumer and Control (IJ3C), Vol. 12, No.2 (2023)

 16

[31] J. Shi and C. Tomasi, "Good Features to Track, " TR93-

1399 Cornell University, 1993.

[32] C. Harris and M. Stephens, "A Combined Corner and

Edge Detector, " Alvey Vision Conference, 15, 1988.

[33] R Pantos; W. May, "Playlists". HTTP Live Streaming,

IETF. p. 9. sec. 4. doi:10.17487/RFC8216. ISSN 2070-

1721. RFC 8216. Retrieved Jan 15, 2020.

[34] https://helpx.adobe.com/adobe-media-

server/dev/stream-live-media-rtmp.html

[35] https://www.iso.org/standard/83314.html

[36] https://support.google.com/youtube/answer/2853702?

hl=en

[37] https://abhitronix.github.io/vidgear/v0.3.2-stable/

[38] J. Geistert, T. Senst and T. Sikora, "Robust local optical

flow: Dense motion vector field interpolation," 2016

Picture Coding Symposium (PCS), Nuremberg,

Germany, 2016, pp. 1-5, doi:

10.1109/PCS.2016.7906352.

Ping Juei Liu1* received a Ph.D. degree in

Computer Science and Information Engineering

from the National Taiwan University of Science
and Technology. He is an Assistant Professor in the

Department of Artificial Intelligence and

Computer Engineering at the National Chin-Yi
University of Technology in Taiwan. His research

interests include computational photography,

image processing, and machine learning.

Yu-Cheng Wang2 is looking forward to a

Master's degree in Computer Science and

Information Engineering at the National Chin-Yi

University of Technology in Taiwan. His research
interests include image processing and machine

learning.

https://helpx.adobe.com/adobe-media-server/dev/stream-live-media-rtmp.html
https://helpx.adobe.com/adobe-media-server/dev/stream-live-media-rtmp.html
https://www.iso.org/standard/83314.html
https://support.google.com/youtube/answer/2853702?hl=en
https://support.google.com/youtube/answer/2853702?hl=en
https://abhitronix.github.io/vidgear/v0.3.2-stable/

