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Abstract 

The segmentation of cytoplast and nucleus 

from a cervical cell image is one of important 

techniques for automatically detecting abnormal 

cervical cells. Noise on an image often makes 

segmentation inaccurate. This paper presents two 

new techniques, named trimming-mean filter and 

bi-grouping enhancer, to effectively eliminate noise 

and make the object boundaries more discernible. In 

this paper, the two proposed techniques are integrated 

with other techniques to create a nucleus and 

cytoplasm contour detector (NCCD detector) to 

automatically server the cytoplasm and nucleus from 

a cervical smear image. Compared to the gradient 

vector flow active contour model (GVF-ACM) and a 

texture-based segmentation method, the NCCD 

detector has a better performance in segmentation. 

Five commonly used performance criteria, including 

misclassification error (ME), edge mismatch (EM), 

region nonuniformity (RU), relative foreground area 

error (RFAE), and shape distortion penalty (SDP), 

will be taken to evaluate the segmentation techniques. 

The experimental results indicate that the NCCD 

detector is more effective in segmenting nucleus and 

cytoplasm from a cervical smear image. 

Keywords: cervical smear screening, image 

segmentation, salt and pepper noise, Gaussian noise, 

active contour model 

1. Introduction 

The primary cause of mortality among women 

in Taiwan was cervical cancer before 1984. After the 

Taiwanese government encouraged women to 

undergo routine smear screening from 1996 to 2004, 

the death rate decreased to a fifth and is still 

decreasing [20]. Currently, smear screening is the 

most popular and efficient method to detect the 

abnormal cervical cells. The purpose of the screening 

is to diagnose pre-malignant cell changes before the 

cell progresses to a cancerous one. 

 

 

 

 

 

Dysplasia cells have undergone precancerous 

changes, which generally have longer and darker 

nucleus and have a tendency to cling together in large 

clusters. It can be further divided into three stages — 

mild, moderate, and severe. Mild dysplasia cells are 

enlarged and have bright nuclei while the moderate 

dysplasia cells have larger and darker nuclei. The 

mild and moderate dysplasia cells may start to 

deteriorate and become severe dysplasia cells that 

have a large, dark, and often oddly shaped nucleus, 

dark cytoplasm, and is a relatively small cell [17]. 

Precancerous and cancerous cells are associated with 

a variety of morphologic and architectural alterations, 

including changes in cytoplasm and nucleus like 

brightness, roundness, size, elongation, perimeter, as 

well as the ratio of the cytoplasm area to the nucleus 

area. Figure 1 shows the examples of normal and 

abnormal squamous cells stained to enhance the 

image contrast. 

 

    
(a) (b) 

Figure 1: Squamous cells stained to enhance 

image contrast for (a) normal cells and 

(b) abnormal cells. 
 

Currently, manual screening methods are costly 

and sometimes prone to human errors that often result 

in inaccurate diagnosis. Introduction of machine 

assisted screening techniques will bring significant 

benefits to the community, not only reducing 

financial costs but increasing screening accuracy. 

Efficient segmentation of cell nucleus and cytoplasm 

is crucial in designing an assisted screening system. 

Wu et al. [25] introduced a parametric optimal 

segmentation approach which is suitable for the 

images of non-overlapped cells with smooth cell 

boundaries or contours. To conduct the segmentation 

of cell images, a priori knowledge of the nuclear 

characteristics is critical, which includes the shape, 

size of the cell, and its intensities relative to its 

background.  

Mat-Isa et al., based on thresholding, [18] utilized 

the region growing algorithm as a feature extraction 

technique. This proposed algorithm is called seeded 

region growing features extraction (SRGFE), which 

is used to extract the size and grey level of certain 

region of interest on a digital image. In the SRGFE 
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algorithm, the user needs to determine the region of 

interest by clicking the mouse on any pixels in the 

region and to specify the threshold value, which 

makes the system impractical.  

Walker [26] used a series of automated fast 

morphological transforms with octagonal structuring 

elements. Each gray-scale cell image is first globally 

thresholded, resulting in an incomplete segmentation 

of the nucleus in binary form. Cytoplasmic 

backgrounds are removed by performing a closing of 

the image using a structured element smaller than a 

minute nucleus, and nuclear inhomogeneity is 

corrected by an opening of a similar size. However, it 

is only suitable for local thresholding because it is not 

fully automated. 

Many other cytoplasm and nucleus morphological 

segmentation methods have been proposed in the 

related literatures [1-5, 8, 10, 12-13, 16, 18, 25-26, 

29]. However, most of their results are based on 

tedious hand-segmentation of images. Martin [17] 

and Norup [19] take the CHAMP Digital image 

software to segment and classify cervical smear 

images. Unfortunately, the CHAMP Digital image 

software cannot provide a satisfied segmentation 

performance, especially for abnormal cervical cells. 

The aim of this paper is to develop an image 

segmentation system to sever the cytoplast and 

nucleus from a cervical smear image. This system is 

very helpful for developing an automated cervical 

smear screening system without a priori knowledge 

of the image objects. 

Generally, the accuracy of an object contour 

detector depends on the quality of the image. The 

heavily stained cervical smear may be masked by 

menstrual blood, vaginal discharge, air artifacts etc., 

obscure to the abnormal cervical cells. Sometimes, 

overexposure or underexposure under the microscope 

light may also blur the cervical smear images. This 

brings about difficulties for cytopathologists to 

extract important morphologies of cervical cells due 

to these problems.  

The principal objective of image preprocessing 

techniques is to make an image more suitable than 

the original image for further processing. Noises on 

an image may obstruct object segmentation, but the 

denoising operation often introduces observable 

blurring effects. To resolve the problems mentioned 

above, in this paper, two new techniques ― 

trim-meaning filter and bi-grouping enhancer ― are 

presented to eliminate the noises on an image and to 

sharpen the object contours before extracting the 

objects. This paper also proposes a nucleus and 

cytoplasm contour detector (NCCD detector) to 

automatically segment the cytoplasm and nucleus 

from a cervical smear image for further analyses.  

The NCCD detector takes the trimming-mean 

filter to dispose of the impulse and Gaussian noises in 

a cervical smear image I, while the bi-grouping 

enhancer is applied to sharpen the blur contours of 

the objects in I. Additionally, Sobel operator [11] is 

adopted to compute the gradient map in I. An 

automatic thresholding method proposed by Otsu [21] 

is applied to find the gradient thresholds. A thinning 

algorithm [15] is used to trim off the false contour 

pixels. Finally, the darkest segmented object, 

regarded as the nucleus, in a cell is effectively 

separated from the cytoplasm. Besides cervical smear 

images, the trim-meaning filter and bi-grouping 

enhancer are also available in detecting object 

contours on other images. 

2. NCCD Detector 

Most image segmentation methods perform 

well when the image quality is good enough for our 

human vision to distinguish the contours of the 

objects. However, many cervical smear images are 

contaminated so that the contours between cytoplasm 

and nuclei of the cervical cells are often vague, 

especially for abnormal cells. This paper applies the 

trim-meaning filter and bi-grouping enhancer in 

pre-processing steps to eliminate the noises and to 

highlight the contours of the objects on an image. 

Based on both proposed techniques, this paper 

provides the NCCD detector. This section will 

introduce the NCCD detector in detail. 
 

2.1 Image Denoising 
 

The efficiency of object segmentation mainly 

depends on the quality of the processed image. It is 

well known that the generation of an accurate edge 

map becomes a critical issue when the images are 

corrupted by noises. Impulse (also known as salt & 

pepper) and Gaussian noises are frequently 

encountered during image acquisition. A Gaussian 

noise is the pixel with amplitude slightly different 

from that of its neighbors, while an impulse noise is 

the pixel with amplitude much larger or much smaller 

than those of its neighbors. This paper proposes a 

trimming-mean filter to remove the impulse noise 

and Gaussian noise which frequently occurred in the 

cervical smear images. 

The trimming-mean filter works as follows. Let 

pi,j be the pixel located at position (i, j) in a cervical 

smear image Io, and Wi,j represent a window 

consisting of m×m pixels where pi,j is located at its 

center. We call Wi,j is the corresponding window of 

pi,j. Assume that }{ 2
m21j,i c,...,c,cC   represents the 

colors of the pixels in Wi,j, and the colors in Ci,j are 

sorted in ascending order, 2
m21 c...cc  . 

Since impulse noises are generally a few pixels 

with amplitudes much larger or smaller than those of 

their neighbors, the colors close to the lower and 

upper tails in Ci,j may be the colors of impulse noises. 

Hence, the trimming-mean filter cuts off the lower 

and upper tails of Ci,j for efficient removal of the 

impulse noise. In contrast, Gaussian noises are the 
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pixels with amplitudes only a little different from 

those of their neighbors. The trimming-mean filter 

eliminates Gaussian noise by replacing the color of 

pi,j with the average c  of the remaining pixel colors 

in Ci,j. Both the impulse noise and Gaussian noise are 

expected to be eliminated effectively. Let α represent 

the percentage of pixels trimmed on the lower and 

upper tails of Ci,j, and c  can be calculated from the 

following equation: 
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Figure 2 tells that the trimming-mean filter can 

significantly eliminate the impulsive and Gaussian 

noises, where α and m are set to be 0.5 and 5, 

respectively. 

Several denoising techniques have been 

proposed, such as the average filter [14], the 

Gaussian filter [14] and type-B filter [23]. Figure 3 

shows the images after eliminating the impulse noise 

and Gaussian noise using the previously mentioned 

filters. Figure 3(a) is a 64×64 synthetic image with 

the gray levels 125 and 175 in the central square and 

the surrounding areas, respectively. As shown in 

Figure 3(b), three percent of the impulse noises and 

Gaussian noises with parameter Sigma = 4 have been 

added to the image by using MATLAB image 

processing toolbox, imnoise. The PSNR between a 

noisy image and a denoised image is used to evaluate 

the efficacy of various denoising methods. As 

demonstrated in Figure 3, the trimming-mean filter 

can efficiently remove the impulse noise and 

Gaussian noise. 

    
(a) (b) 

Figure 2: (a) The original cell images and (b) their 

corresponding images denoised by 

trimming-mean filter. 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

 

Figure 3: (a) The synthetic image and (b) its 

corresponding image corrupted by 3% 

impulse noises and Gaussian noises 

with the parameter Sigma = 4. The 

images after being processed by using 

(c) average filter, (d) Gaussian filter, (e) 

type-B filter, and (f) trimming-mean 

filter, respectively. 

 

2.2 Edge Enhancement 
 

    

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4: Cervical smear cell images (upper) and 

their corresponding gradient edge maps 

(lower). (a) The original images and the 

images after being processed by (b) AIO, 

(c) Type-A filter, and (d) bi-grouping 

enhancers 

 

The term “edge” stands for a local luminance 

change, where the gradient of sufficient strength is 

considered important in a given task. Other 

contextual edge detection techniques based on edge 

suppression have been previously proposed. Russo 

[23] proposed a type-A filter to enhance the contours 

of objects by taking into account the differences 

between the pixel to be processed and its neighbors; 

small differences are considered as noises which 

should be reduced while large differences are treated 

as edges to be preserved. A two-step procedure is 

applied to each image channel to increase the 

effectiveness of smoothing action. Hence, type-A 

pixels are those corrupted by noises with amplitude 

similar to those of their neighbors. 

Yin [28] also proposed an automatically adaptive 

window–level selection algorithm, namely adaptive 

image optimization (AIO), for improving the image 

quality. In this algorithm, the ROI is first extracted by 

using the variance change and the integral projection; 

second, the image statistics values, such as maximum, 

minimum, and average values, are obtained in the 

detected ROI; finally, the window and level are 

determined from the image statistics values, and a 

contrast transfer function is obtained using the cubic 

spline interpolation. Adopting AIO, the quality of the 

image is improved by increasing the maximum 

dynamic range adaptively. 

Figure 4 shows the images processed by type-A 

filter and AIO algorithm, and their corresponding 

gradient images processed by Sobel gradient operator 
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[11]. The experiment results show that in both 

methods, suppression has no effect on nearby edges 

which have equally strong gradients. This paper 

therefore proposes bi-grouping enhancer to 

effectively isolate the object pixels from the 

background pixels. 

In practice, there are many images with vague 

object boundaries, such as the images in Figures 4(a). 

Besides, denoising operations often introduce severe 

blurring effect. The purpose of the bi-grouping 

enhancer is to discriminate the object pixels from 

background pixels close to the contours of the 

objects. 

After being processed by the trimming-mean filter, 

the original cervical smear image Io becomes the 

image It. Similarly, let pi,j be the pixel located at the 

coordinates (i, j) in It, and Wi,j be the corresponding 

window of pi,j where pi,j is the central pixel of Wi,j 

consisting of m×m pixels. Assume that 

}{ 2
m21j,i c,...,c,cC 

 indicates the colors of the 

pixels in Wi,j sorted in ascending order, 

2
m21 c...cc 

. 

The bi-grouping enhancer defines the interval 
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indefinite intervals. It is difficult to recognize 

whether pi,j is in an object or in background while 

the color c of pi,j lies in both intervals. 
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If c is in the indefinite intervals, the bi-grouping 

enhancer changes c into the average ca of the first 

half of Ci,j when c is closer to ca, or c is supplanted by 

the average of the latter half of Ci,j. Figures 5 

illustrates that the bi-grouping enhancer can more 

efficiently separate the object pixels from the 

background pixels effectively. 

 

 

 

 

    

    

  

  
 

(a) (b) 

Figure 5: (a) Three original images and their 

gradients; (b) The images after being 

processed by the trimming-mean filter 

and their gradients after further being 

processed by the bi-grouping enhancer 

 

2.3 Gradient Calculation 
 

Since an edge corresponds to a set of strong 

illumination gradients, the edge can be displayed in 

colors by calculating the derivatives of the image. 

The position of the edge can be estimated with the 

maximum of the first derivative or with the 

zero-crossing of the second derivative. Many gradient 

computation methods have been proposed, such as 

the Matlab gradient function, Roberts cross, and the 

Sobel operator [11]. The Sobel operator is widely 

used and has proved to be efficient for the gradient 

edge detector. Thus, this paper takes the Sobel 

operator to compute the gradients of all the pixels in 

the image obtained by the bi-grouping enhancer. The 

Sobel operator performs a 2-D spatial gradient 

measurement on an image and emphasizes the 

regions of high spatial gradient corresponding to 

edges. Two 3×3 convolution masks shown in Figure 

6 are employed in the Sobel operator.  

Let pi,j be a pixel located at the coordinates (i, j) in 

the image, and Wi,j be the corresponding window of 

pi,j with 3×3 pixels. The gradient gi,j of pi,j is defined 

as  

gi,j = ((Gx♁Wi,j)
2
+(Gy♁Wi,j)

2
)
1/2

, 

where ♁ is the operator of convolution. Assume 

that gM is the maximal gradient of all the pixels in the 

image. To generate an image fg describing the 

gradients of the pixels in the image, this approach 

assigns the value 255
g

g

M

j,i
  to the color intensity of 

the pixel located at the coordinates (i, j) in image fg. 
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-1 0 +1  +1 +2 +1 

-2 0 +2  0 0 0 

-1 0 +1  -1 -2 -1 

 Gx    Gy  

Figure 6: Sobel convolution masks Gx and Gy in 

the x- and y-directions 

 

2.4 Threshold Finding 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

Figure 7: (a) A cervical image; (b) the image of (a) 

after being processed by the 

trimming-mean filter and the 

bi-grouping enhancer; (c) the gradient 

of (a) obtained by Matlab gradient 

function; (d) the gradient of (b) obtained 

by the Matlab gradient function; (e) the 

gradient of (b) obtained by Roberts 

cross; (f) the gradient of (b) obtained by 

the Sobel operator; (g), (h), (i), and (j) 

are respectively the fb of (c), (d), (e), and 

(f) 

 

The color intensity of a pixel pij in fg represents 

the possibility of the pixel located at the coordinates 

(i, j) in f0 to be an edge pixel. To successfully cut off 

the cytoplast and nucleus from f0, given an adaptive 

threshold to isolate the possible edge pixels is the 

pre-requisite. When given a bigger threshold, higher 

contrast edges may be obtained but some desired low 

contrast edges may be missed. On the contrary, lower 

contrast edges may be earned for given a smaller 

threshold but more noise edges may probably be 

obtained at the same time. Otsu’s method [21] is one 

of the often used threshold decision methods. The 

NCCD detector hence utilizes it to specify the 

threshold Th. 

Assume that fg contains n pixels with gray levels 

from 1 to l. Let ni be the number of pixels at level i; 

hence, n=n1+n2+, …, +nl. Suppose that the pixels are 

dichotomized into two classes C0 and C1, so that the 

gray levels of the pixels in C0 and C1 are respectively 

in the interval [1, 2, …, l0] and in the interval [l0+1, 

l0+2, …, l]. Otsu’s method maximizes the posteriori 

between-class variance )(t
2

B  by given the 

following equation: 
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The optimal threshold Th is found through a 

sequence of searches:  

Th=   






 


tmaxarg

2

B

1l

2t
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After that, the NCCD detector sweeps each pixel 

pij in fg to generate a binary image fb. If the color 

intensity of pij is greater than or equal to Th, the 

NCCD detector assigns 1 to be the color of the pixel 

located at the coordinates (i, j) on fb; otherwise it is 

given to be 0. The pixels in fg corresponding to the 

pixels colored by 1 in fb are called candidate edge 

pixels. Figure 7 shows the gradients obtained by 

Matlab gradient function, Roberts cross, and the 

Sobel operator, and their fb. 

 

2.5 Nucleus and Cytoplasm Segmentation 

 

The expected edge should be one-pixel thick. 

The NCCD detector hence adopts a hit-and-miss 

transform based skeletonization (HMTS) algorithm 

[15] to build the edges of thickness of one pixel. We 

name the eliminated candidate edge pixels 

redundant-edge pixels and the remaining candidate 

edge pixels true-edge pixels. 

 

0 0 0   0 0  1  0   1  

 1   1 1 0  1 1 0  1 1 0 

1 1 1   1   1  0   0 0 

               1 1 1   1   0  1  0 0  
 1   0 1 1  0 1 1  0 1 1 

0 0 0  0 0   0  1   1  

Figure 8: The eight structuring elements for 

thinning 
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In this paper, the HMTS algorithm is used to 

remove the redundant-edge pixels so that each edge’s 

thickness is one pixel. Let each pixel pi,j in fb 

correspond to a window Wi,j, where Wi,j consists of 

3×3 pixels and pi,j be the central pixel of Wi,j. This 

algorithm compares Wi,j with each of the eight 

structuring elements shown in Figure 8 where the 

gray areas stand for don't-care pixels. A don't-care 

pixel may be a 1-bit pixel or a 0-bit pixel. We say Wi,j 

is matched if the positions and values of the 1-bits 

and 0-bits on one structuring element are completely 

the same as those of Wi,j regardless of don't-care 

pixels. When Wi,j is matched, the color of pi,j is 

changed into 0. 

The HMTS algorithm is performed to trim away 

the redundant-edge pixels, so that the edges are the 

thickness of only one pixel. It scans each pixel pi,j in 

fb. If Wi,j is match, pi,j is given to be 0-bit. The 

algorithm repeats this procedure until no more 

thinning has to be performed. The HMTS algorithm 

guarantees that connectivity is preserved so that the 

overall geometric structure of the object in the image 

is preserved. 

However, uneven edges of objects tend to cause 

small spurs on the skeleton, which are not the 

required edges in this paper. Therefore, a pruning 

algorithm is required to remove them. The procedure 

of the pruning algorithm is entirely the same as those 

of the HMTS algorithm except for the eight 

structuring elements in Figure 8 are replaced by the 

eight structuring elements in Figure 9. 

 

0 0 0  0 0 0  0 0 0   0 0 

0 1 0   1 0  0 1 0   1 0 

0     0 0    0  0 0 0 

               

0 0     0  0 0 0  0   

0 1   0 1 0  0 1   0 1 0 

0 0 0  0 0 0  0 0   0 0 0 

Figure 9: The eight structuring elements for 

trimming spurs 

 

       

       
(a) (b) (c) (d) (e) (f) (g) 

Figure 10: (a) Two cell images; the image obtained 

orderly by (b) trimming-mean filter 

and bi-grouping enhancer, (c) Sobel 

operator, (d) Otsu’s thresholding, (e) 

thinning, (f) spur trimming, and (g) 

nucleus-cytoplasm segmentation 

 

 

 

Finally, the biggest closed loop Lc on fb 

describes the contour of the cytoplasm, and the 

darkest region on f0 surrounded by a loop which 

corresponds to a closed loop Ln on fb within Lc is the 

nucleus. It means that Lc and Ln are the cytoplasm 

and nucleus contours of the cervical cell on f0. Figure 

11 shows the results obtained in each approach of the 

NCCD detector. 

3. Experimental Results 

The purpose of this section is to investigate the 

performance of the NCCD detector by experiments 

compared to the performances of the GVF-ACM 

method [27] and the CHAMP software [17, 19]. 

These experiments use of 25 gray-level cervical 

smear images as the test images, each with 64×64 

pixels, where 12 were provided by Dr. Huang of the 

Taichung Hospital in Taiwan, R.O.C. and the 

remnants were downloaded from the cell image 

database from the Technical University of Denmark, 

DTU [17]. Figure 16 displays these test images and 

their target cytoplasm and nucleus contours, 

manually drawn by an experienced doctor. 

In these experiments, the NCCD detector was 

employed to extract the cytoplasm and nucleus 

contours of the test images. It takes m=5 and α=0.5 in 

trim-meaning approach, and m=5 in 

bi-groupingapproach. The GVF-ACM method is 

adopted to sever the cytoplasts and nucleuses from 

the test images where all the parameters α, β, κ are 

given to be 1. The CHAMP software is also used to 

separate the cytoplasts and nucleuses from the test 

images. Figure 11 gives the cytoplasm and nucleus 

contours of the 25 test images cut by the NCCD 

detector, GVF-ACM method, and CHAMP software. 

 

No. 
Original 

Image 

Target 

Contour 
CHAMP 

ACM-GV

F 
NCCD 

1 

     

2 

     

3 

     

4 

     

5 
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6 

     

7 

     

8 

     

9 

     

10 

     

11 

     

12 

     

13 

     

14 

     

15 

     

16 

     

17 

     

18 

     

19 

     

20 

     

21 

     

22 

     

23 

     

24 

     

25 

     

Figure 11: The original images, the target 

cytoplasm and nucleus contours of 

the test image, and the cytoplasm 

and nucleus contours cut by the 

CHAMP software, GVF-ACM 

method, and NCCD detector 

 

Mehmet Sezgin and Bulent Sankur [24] survey 

five frequently used error measures of segmentation: 

misclassification error (ME), edge mismatch (EM), 

region nonuniformity (RU), relative foreground area 

error (RFAE), and shape distortion penalty (SDP). 

This paper also evaluates the performances of the 

CHAMP software, GVF-ACM method, and NCCD 

detector via ME, EM, RU, RFAE, and SDP. Table 1 

respectively lists the averages (AVE) and standard 

deviations (Std) of the error measures for the 

extracted cytoplasm and nucleus contours of the 25 

testing images cut by the CHAMP software, 

GVF-ACM method, and NCCD detector. 
 

Table 1. The averages and standard deviations 

(Ave/Std) of the error measures for the 

extracted cytoplasm and nucleus 

contours obtained by the CHAMP 

software, GVF-ACM method, and 

NCCD detector 
Method Object ME EM NU RFAE MHD 

GVF- 

ACM 

Nucleus 0.015/0.016  0.681/0.130  0.015/0.034  0.355/0.199  1.260/0.456 

Cytoplasm 0.079/0.064  0.554/0.221  0.100/0.112  0.124/0.124  1.436/0.978 

CHAMP 
Nucleus 0.011/0.014  0.399/0.174  0.011/0.036  0.249/0.170 0.512/0.357  

Cytoplasm 0.058/0.034  0.416/0.117  0.143/0.124  0.106/0.076  0.757/0.427 

NCCD 
Nucleus 0.002/0.004  0.0720/0.120  0.016/0.033  0.047/0.093  0.125/0.224 

Cytoplasm 0.008/0.010  0.048/0.067  0.109/0.106  0.020/0.032  0.143/0.215 

 

No. 
Original 

images 

Without 

trim-meaning and 

bi-grouping  

With 

trim-meaning and 

bi-grouping 

1 

   

2 

   

3 

   

4 
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Figure 12: (a) The original images and their 

corresponding segmented images 

obtained by the methods (b) without 

the trim-meaning filter and 

bi-grouping enhancer, and (c) with 

the trim-meaning filter and 

bi-grouping enhancer 

 

The GVF-ACM method is very sensitive to the 

curves of objects and noises. Hence, the GVF-ACM 

method cannot provide a satisfactory performance for 

segmenting the nucleuses and cytoplasts of most 

images in Figure 11. Although different results could 

be obtained by changing the values of its parameters, 

the optimal parameters are image-dependent. It is 

very difficult to specify a set of parameters which can 

be applied to all of the images. The CHAMP software 

works very well, such as, the images 2, 3, 5, 8, 17, 21 

in Figure 11, when the texture of an object is 

uniformed. Otherwise, it gives unsatisfactory results, 

for example, the images 6, 7, 11-15 in Figure 11. 

Table 1 and Figure 11 demonstrate that normally the 

NCCD detector can provide a much better 

performance in segmenting cytoplasm and nucleus. 

The next experiment is to scrutinize the 

performance of the trim-meaning filter and 

bi-grouping enhancer. In this experiment, Otsu’s 

method is used to find the adaptive threshold for 

isolating the possible edge pixels on the original 

images in Figure 12 without the pre-processed by the 

trim-meaning filter and bi-grouping enhancer. The 

images in column “Without trim-meaning and 

bi-grouping” of Figure 12 are the experimental 

results. Additionally, the images in column “With 

trim-meaning and bi-grouping” of Figure 12 are 

the results obtained by the NCCD detector. 

4. Conclusions 

This paper presents a NCCD detector to 

automatically extract the cytoplasm and nucleus of a 

cervical smear image. Noises on an image often make 

segmentation inaccurate. This paper provides the 

trimming-mean filter to eliminate the noises on an 

image, and the bi-grouping enhancer to suppress the 

noises and brighten the object contours. These two 

proposed techniques are then integrated with the 

Sobel operator, Otsu’s method, HMTS algorithm, and 

pruning algorithm, to create the NCCD detector 

automatically detecting the cytoplasm and nucleus 

contours of a cervical smear image.  

This paper also takes five frequently used error 

measures of segmentation to evaluate the efficiency 

of segmentation obtained by the CHAMP software, 

GVF-ACM method, and NCCD detector. The 

experimental results show that the NCCD detector 

can give much better segmentation effectiveness than 

the CHAMP software and GVF-ACM method. The 

experimental results also show that the 

trimming-mean filter and the bi-grouping enhancer 

are much helpful to eliminate noises and intensify the 

contour of an object. Besides the cervical smear 

image, the trimming-mean filter and the bi-grouping 

enhancer can be also valuable for detecting the object 

contours on other images. 
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