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Abstract 

Residue Number System (RNS) has 

computational advantages for large integer arithmetic. 

It provides the benefits of parallel, carry-free, and 

high-speed arithmetic in addition, subtraction, and 

multiplication. However, overflow detection, sign 

detection, magnitude detection, and division are 

time-consuming operations in RNS. The most 

interesting one of the above operations is division, 

and many related researches have been proposed to 

make it more efficient. Hiasat and Abdel-Aty-Zohdy 

proposed a high-speed division algorithm using the 

highest power comparison to speed up division in 

RNS. Their algorithm evaluates the quotient 

according to the highest powers of 2 in the dividend 

and the divisor. Nevertheless, the evaluated quotient 

is underestimated such that there are redundant 

execution rounds in their algorithm. Thus, Yang et al. 

proposed a division algorithm in RNS using parity 

checking technique in 2004. In this algorithm, the 

evaluated quotient is estimated precisely such that the 

actual quotient can be found quickly. However, 

computing the highest powers of 2 in the dividend 

and the divisor is time-consuming in RNS, and this 

computation must be performed in each execution 

round of Yang et al.’s algorithm. Consequently, we 

propose the bisection method in RNS to design a 

division algorithm in the paper. Our new algorithm 

uses the bisection method in RNS to find the quotient 

in a possible interval efficiently. Compared with 

Yang et al.’s algorithm, our algorithm has less 

execution rounds and greatly reduces the times of the 

highest-power computation in RNS. 

Keywords: Residue Number System, division, 

bisection method 

1. Introduction 

Nowadays, numerous number systems have been 

utilized to make computers more and more powerful. 

The most popular one of these number systems is 

Residue Number System (RNS) because it has many 

advantages of computing large numbers in computers. 

In RNS, a number is represented by the residues of 

all moduli, and the arithmetic can be performed on 

each modulus independently. Thus, RNS offers the 

properties of parallel, carry-free, and high-speed 

arithmetic [1]. However, the overflow detection, sign 

detection, magnitude detection, and division are 

time-consuming operations in RNS. The most 

interesting research topic of them is division because 

it has many applications such as modular operations. 

Thus, several algorithms have been proposed to solve 

division problem in RNS [1-9]. However, all 

proposed algorithms have the drawbacks of long 

execution time and large hardware requirements 

because Mixed-Radix Conversion (MRC) and 

Chinese Remainder Theorem (CRT) are used. Instead 

of employing MRC and CRT, Hiasat and 

Abdel-Aty-Zohdy used the highest power comparison 

between the dividend and the divisor to design a 

division algorithm in RNS [10]. The execution time 

and hardware requirements in their algorithm are less 

than those in other division algorithms. Their 

algorithm computes the evaluated quotient according 

to the highest powers of the dividend and the divisor, 

and obtains the actual quotient by computing the sum 

of all evaluated quotients until the product of the 

divisor and the evaluated quotient is less than the 

dividend. However, the evaluated quotient is 

underestimated in their algorithm such that the 

number of execution rounds increases. Thus, Yang et 

al. proposed a division algorithm in RNS using the 

parity checking technique in 2004 [11]. In the 

algorithm, the evaluated quotient is estimated 

precisely such that approximating the actual quotient 
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by adding the evaluated quotients is two times faster 

than that in Hisat and Abdel-Aty-Zohdy’s algorithm. 

However, computing the highest power of 2 of a 

number is time-consuming in RNS, and Yang et al.’s 

algorithm needs to perform this computation in each 

execution round. This extra load is the bottleneck of 

this algorithm. 

As a result, a bisection method in RNS is 

proposed to design a division algorithm in this paper. 

A new algorithm  in this research uses the bisection 

method to find the quotient in a probable interval 

efficiently, and the algorithm only needs to compute 

the highest-power comparison in RNS in the first 

round. This improvement greatly decreases the 

execution time of each round in our algorithm. 

Furthermore, Yang et al.’s algorithm needs to 

determine the magnitudes of the dividend and the 

divisor by using the parity checking technique twice 

in each round. However, using the bisection method 

in RNS, our algorithm only performs the parity 

checking technique once to determine the magnitude 

of the residue in each execution round. Moreover, the 

proposed division algorithm can be efficiently 

applied to many applications, such as image 

processing [12], cryptosystems [13], and modular 

exponentiation arithmetic [14]. 

The remainder of this paper is organized as 

follows. A review of popular image compression 

algorithms that support the ROI capability is given in 

Section II. In Section III, we shall address our 

proposed multiple-ROI image compression scheme. 

Then the simulation results and a further discussion 

are provided in Section IV. Finally, a brief conclusion 

is drawn in Section V. 

2. Hiasat and Abdel-Aty-Zohdy's 
division algorithm 

Given a set of relatively prime moduli 

}...,,,{ 21 nmmmB  , where 1),gcd( ji mm , ji  , 

we compute 



n

i

imM
1

. Here, B and M are called 

the base and the range of RNS. In RNS, any number 

X  less than the range M  can be denoted as a 

vector )...,,,( 21 nxxxX  , where 

imi mXXx
i

mod . According to Chinese 

Remainder Theorem, any X  less than M  has 

only one RNS representation. We assume that two 

integers ),0[, Myx   in RNS are 

)...,,,( 21 nxxxX   and )...,,,( 21 nyyyY  , 

respectively, and compute 

)...,,,( 21 nzzzYXZ  , where   can be 

addition, subtraction or multiplication in RNS. Then 

Z can be obtained by computing YX  

)...,,,()...,,,( 212211
21

nmnnmm
zzzyxyxyx

n

 . 

That is, the computation can be performed 

concurrently and independently on each residue in 

RNS. Therefore, addition, subtraction, and 

multiplication of two large numbers, individually 

converted into RNS representations, can be 

efficiently computed because of the properties of 

parallelism and no carries. 

Assume that we want to compute Q = [
𝑋

𝑌
] in 

RNS, where X, Y, and Q are positive integers. In 

Hiasat and Abdel-Aty-Zohdy’s algorithm, )(Ih  can 

be computed the highest power of 2 in the variable 

I  represented by RNS. According to [10], )(Ih  is 

implemented by a proper combinational circuit like a 

priority encoder and an n-operand binary adder, 

where n is the number of the moduli in RNS. Hiasat 

and Abdel-Aty-Zohdy’s algorithm is shown as 

follows. 

Step 1: Set the quotient 0Q . 

Step 2:

  

Compute )(Xhj   and )(Yhk  , 

where j  and k  are the highest powers 

of 2 in X  and Y , respectively. 

Step 3:

  

If kj  , then compute 12'  kjQQ , 

YXX kj *2' 1 , 'QQ  , 'XX  . 

Go to Step 2. 

Step 4:

  

If kj  , then compute YXX '  

and )'(' Xhj  . If jj '  then 

1 QQ . Otherwise, Q  is unaltered. 

End the procedure. 

Step 5: If kj  , then Q  is unaltered. End the 

procedure. 
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Hiasat and Abdel-Aty-Zohdy’s algorithm 

utilizes addition, subtraction, and multiplication 

according to the highest powers of 2 in dividend and 

divisor to achieve division in RNS. Besides, the 

algorithm performs division efficiently by avoiding 

the magnitude detection and overflow detection in 

RNS. 

3. Yang et al.’s algorithm 

Assume that we want to compute Q = [
𝑋

𝑌
] in RNS, 

where X, Y, and Q are integers. Note that )(Ih  

denotes the highest power of 2 in the variable I , 

where I  is RNS representation of an integer. For 

example, 10 = (0, 1, 0) and (–7) = (1, 2, 3) with the 

moduli (2, 3, 5) in RNS, then we have 

3))0,1,0(( h  and 2))3,2,1(( h . Besides, )(XS  

is defined as the sign of variable X . If 

)()( YSXS  , it denotes that X  and Y  are with 

the same sign. In addition, the parity checking 

technique [8] is used in this algorithm to determine 

the sign of a number in RNS. Unlike other sign 

detection algorithms in RNS using MRC or CRT, the 

parity checking technique can easily obtain the sign 

of a number in RNS by checking its parity and 

looking up a table. This technique makes the sign 

detection and the magnitude comparison in RNS 

more efficient. The details of the parity checking 

technique are available in [8]. Yang et al.’s algorithm 

is shown in the following. 

 

 

 

 

 

In this algorithm, the evaluated quotient is 
kj2  which is larger than 12 kj  in Hiasat and 

Abdel-Aty-Zohdy’s algorithm such that the actual 

quotient can be obtained quickly in Yang et al.’s 

algorithm. Compared with Hiasat and 

Abdel-Aty-Zohdy’s algorithm, Yang et al.’s algorithm 

reduces the number of execution rounds by 50%. 

 

 
 

Step 1: Set the quotient 0Q  and 0c . 

Step 2:

  

Compute )(Xhj   and )(Yhk  , 

where j  and k  are the highest power 

of 2 in X  and Y , respectively. Then, 

check the signs of X  and Y  by parity 

checking. According to the relationships 

between j  and k , we perform one of 

the following three steps. 

Step 3:

  

If kj  , we perform the following 

operations: 

Set 1c . 

If )()( YSXS  , then we compute 
kjQQ  2' , YXX kj *2'  , 

'QQ  , 'XX  ; otherwise, we 

compute kjQQ  2' , 

YXX kj *2'  , 'QQ  , and 

'XX  . Go to Step 2. 

Step 4:

  

If kj  , we perform the following 

operations. 

If )()( YSXS   and 1c , then we 

compute YXX '  and )'(' Xhj  . If 

jj '  then we compute 1 QQ . 

Otherwise, Q  is unchanged. End 

procedure. 

If )()( YSXS   and 1c , then we 

compute YXX '  and check the sign 

of 'X  by parity checking. If 0'X , 

then we compute 1 QQ . Otherwise, 

we set 2 QQ . End procedure. 

If )()( YSXS   and 0c , then we set 

1Q . End procedure. 

Step 5: If kj  , we perform the following 

operations. 

If 0c , then Q  is unchanged. End 

procedure. 

Otherwise, we compute 1 QQ . End 

procedure. 
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4. The proposed algorithm 

After observing Yang et al.’s algorithm, we find 

)(Ih  and the parity checking technique must be 

performed twice in each round of their algorithm. If 

we decrease the numbers of these two computations in 

each round, the execution time can be reduced. Thus, 

we propose a bisection method in RNS to accomplish 

this purpose. In the following, our algorithm is shown. 

 

Input: ( YX , : are expressed in RNS) 

Output: ( Q : is expressed in RNS) 

 
In our algorithm, we define RNS , RNS , and 

RNS  as addition, subtraction, and multiplication in 

RNS, respectively. Besides, uQ  and lQ  are the 

upper and the lower bound of the actual quotient in 

our algorithm, respectively. In Step 4, we compute 

2

'Q
Q   to be the evaluated quotient in each round of 

our algorithm. If all chosen moduli in RNS are odd 

integers, then computing 
2

'Q
 can be directly made 

in RNS without converting it into the binary or the 

decimal system. For example, assume that the 

multiplicative inverses of 2 modulo all moduli 

)...,,,( 21 nmmm  in RNS are )
2

1
...,,

2

1
,

2

1
(

21 nmmm

, 

and the RNS representation of 'Q  is )...,,,( 21 nqqq . 

Then, we have 
2

'Q
=

)
2

1
...,,

2

1
,

2

1
(

2
2

1
1

21

n
n m

n

m
m

m
m

m

qqq  . 

Moreover, the multiplicative inverses of 2 modulo all 

moduli in RNS can be precomputed to reduce the 

computation time. 

5. Analyses 

We simulate Hiasat and Abdel-Aty-Zohdy’s 

algorithm, Yang et al.’s algorithm, and our algorithm 

in Visual C++ 6.0, and run the simulation programs 

for the values of X  and Y  both ranging from 1 to 

30000. Table 1 shows the numbers of execution 

rounds in these three algorithms, and Table 2 shows 

the number of computing )(Ih  and the times of 

performing the parity checking technique in these 

three algorithms. The analysis of the simulation 

results is shown as follows. In Hiasat and 

Abdel-Aty-Zohdy’s algorithm, the evaluated quotient 

is the power of 2 (i.e. 12 kj ), and the actual quotient 

is formed by these evaluated quotients. For example, 

the actual quotient 7
33

258









Q  in Table 1. After 

running Hiasat and Abdel-Aty-Zohdy’s algorithm, 

Q  is formed by 0002 2222  . Note that even if 

7  represented in the binary form is 

012

2 222)111(  , Q  is probably formed by 

0002 2222   or another form in Hiasat and 

Step 1: Compute )(Xhj   and )(Yhk  , 

where j  and k  are the highest powers 

of 2 in X  and Y , respectively. 

Step 2:

  

If kj  , then use the parity checking 

technique to compare X  with Y . If 

YX  , then set 1Q . Otherwise, set 

0Q . End the program. 

If kj  , then set 0Q . End the 

program. 

Step 3: Compute kj

uQ  12  and 12  kj

lQ . 

Step 4:

  

Compute lRNSu QQQ ' . If 'Q  is 

odd, then set )1...,,1,1('' RNSQQ  . 

Step 5: 
Compute Q =

𝑄′

2
 and 

YQXZ RNSRNS  . Then, use the 

parity checking technique to determine 

the sign and the magnitude of Z. 

Step 6: If 0YZ , then set QQl  . Go to 

Step 3. 

Step 7: If 0Z , then set QQu  . Go to Step 

3. 

Step 8: If 0 ZY , then Q  is the quotient. 

End the program 

62



International Journal of Computer, Consumer and Control (IJ3C), Vol. 2, No.1 (2013) 

 

Abdel-Aty-Zohdy’s algorithm. This is because the 

evaluated quotient is underestimated in their 

algorithm such that 12  is formed by 00 22   in the 

above example. In this case, their algorithm must 

execute two rounds to obtain 12 . This property 

causes that there are some redundant rounds in their 

algorithm. Thus, it can be easily observed that the 

number of execution rounds in Hiasat and 

Abdel-Aty-Zohdy’s algorithm depends on the 

components of the quotient Q  represented in the 

binary system. Assume that representing 1Q  in the 

binary system requires  Qlog  bits, then the 

number of execution rounds in Hiasat and 

Abdel-Aty-Zohdy’s algorithm denoted as )1(rounds

must fall in the range shown as Equation (1). This is 

because the maximum number of the binary digits 

used to form 1Q  is   1log2  Q . 

  1log21 )1(  Qrounds        (1) 

In our algorithm, the range of the actual 

quotient Q  is 1

1

1 22   kjkj Q  and we use some 

techniques in RNS to find Q  in this range. With 

another point of view, our algorithm can be regarded 

as performing the bisection method in RNS to find 

Q  in the interval )2,2( 11  kjkj . Thus, the range 

of the number of execution rounds in our algorithm 

denoted as )2(rounds is shown as Equation (2). 

)122log(1 11

)2(   kjkjrounds     (2) 

To compare )1(rounds  with )2(rounds , we adjust 

Equations (1) and (2) in the following steps. 

Since 11 22   kjkj Q , Equation (3) can be 

obtained from Equation (1). 

1)12log(21 1

)1(  kjrounds      (3) 

For the convenience of the analysis, Equation (3) is 

rewritten as Equation (4). 

 )2log(21 1

)1(

 kjrounds         (4) 

Because 

4log)2log()22log()2log( 1211   kjkjkj , 

Equation (5) can be obtained from Equation (4). 

)4log)2(log(21 1

)1(  kjrounds       (5) 

From Equation (2), Equation (6) is obtained as 

follows. 

      )123(l o g1 1

)2(  kjr o u n d s       (6) 

Again, Equation (6) can be rewritten as Equation (7). 

                  

)23l o g (1 1

)2(

 kjr o u n d s       (7) 

Because )2log(3log)23log( 11   kjkj , we 

obtain Equation (8) from Equation (7). 

                  

3l o g)2l o g (1 1

)2(  kjr o u n d s       (8) 

Compared Equation (5) with Equation (8), 

)1(rounds  is the double of )2(rounds . The analysis 

confirms that Yang et al.’s algorithm reduces the 

number of execution rounds by 50% and also by 

comparing with Hiasat and Abdel-Aty-Zohdy’s 

algorithm.  

As the same reason, the number of execution 

rounds in Yang et al.’s algorithm also depends on the 

components of the quotient Q  represented in the 

binary system. Each binary digit of Q  in Yang et 

al.’s algorithm can be obtained by executing one 

round because the evaluated quotient is set larger and 

more precise. Thus, assume that representing Q  in 

the binary system requires  Qlog  bits, then the 

number of execution rounds in Yang et al.’s algorithm, 

denoted as )3(rounds , is shown as Equation (9). 

 Qrounds log1 )3(            (9) 

Using the same thinking steps from Equation (3) to 

Equation (5), Equation (10) can be obtained from 

Equation (9).  

    4l o g)2l o g (1 1

)3(  kjr o u n d s      (10) 

Compared with Equation (8) and Equation (10) 

denoted as )2(rounds  is a little less than )3(rounds . 

Table 4 also shows this fact.  

On the other hand, computing )(Ih  in RNS is 

time-consuming, but Hiasat and Abdel-Aty-Zohdy’s 

algorithm and Yang et al.’s algorithm both needs to 

compute )(Ih  in each round. However, Our 

algorithm only computes )(Ih  in the first round. 

This property greatly reduces the execution time in 
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each round of our algorithm. Although our algorithm 

needs to compute the evaluated quotient by 

2
' lRNSu QQ

Q


 , computing 'Q  by looking up a 

table is faster than computing )(Ih  in RNS. As the 

densities and speed of RAMs increase, the use of 

looking up tables is beneficial. Besides, our algorithm 

decreases the times of performing the parity checking 

technique in each round. This improvement also 

reduces the execution time in each round of our 

algorithm. Table 5 shows the numbers of computing 

)(Ih  and the times of performing the parity 

checking techniques in Hiasat and 

Abdel-Aty-Zohdy’s algorithm, Yang et al.’s algorithm, 

and our algorithm for computing 








Y

X
, where X  

and Y  are all ranging from 1 to 30000. 

 

Table 1: The numbers of execution rounds for the 

simulations 

 

According to Table 2, our algorithm greatly 

reduces the number of computing )(Ih  and the times 

of performing the parity checking techniques by 46% 

and 50%, respectively. Consequently, our algorithm is 

much faster than Yang et al.’s algorithm even if the 

execution rounds in our algorithm are a little less than 

those in Yang et al.’s algorithm. 

 

 

 

 

 

 

 

Table 2: The times of computing h(I) and the 

parity checking techniques 

        Hiasat and 

Abdel-Aty-Zo

hdy’s 

algorithm 

Yang et al.’s 

algorithm 

Our 

algorithm 

Parity 

checking 

technique 

 3324265930 
16621329

65 

)(Ih  3324265930 3324265930 
18000000

00 

 

6. Conclusions 

In this paper, we propose a division algorithm 

using the bisection method in RNS. Assume that the 

highest powers of 2 in the dividend and divisor are 
j2  and k2 , respectively, then the quotient would 

fall into the interval )2,2( 11  kjkj . Our algorithm 

skillfully finds the quotient in the interval without 

converting the numbers from RNS into the binary or 

the decimal system. Compared with Yang et al.’s 

algorithm, our algorithm reduces the number of the 

highest power computation )(Ih  and the parity 

checking techniques in RNS by 46% and 50%, 

respectively. According to the simulation results and 

the analysis in Section 5, it is obvious that our 

algorithm is more efficient than Yang et al.’s 

algorithm. 
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