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Abstract 

Segmentation of myelinated nerve fiber cross 
sections (MNFC) from a sequence of microscopic 
cross-sectional images, which can be used to 
construct the three-dimensional (3D) structure of 
nerve fiber, is important for evaluating neurological 
disorders and nerve regeneration. However, most 
existing segmentation methods do not take the spatial 
relationships between inter-frame MNFCs into 
account,so they usually suffer from several 
difficulties, such as large intensity variations among 
frames and blurred MNFC boundaries, in obtaining 
desirable segmentation results. In this paper, we 
propose a new segmentation method based on 
spatially constrained registration (SCR) to 
automatically segment and reconstruct the 3D 
structure of nerve fiber from microscopic images. At 
first, we utilize a multi-scale gradient 
watershed-based segmentation algorithm to segment 
the MNFCs from each image frame. Considering the 
continuity of the 3D fiber structure, the MNFC 
contexts between adjacent frames are supposed to be 
dependent. The SCR strategy is then employed to 
assure the connectivity between the adjacent MNFCs. 
Based on the connectivity we subsequently recover 
the missing MNFCs with a compensation mechanism 
and finish the segmentation process. Two sets of rat 
tibia nerve images (45 nerve fiber cross-section 
patches) were used to validate the accuracy of the 
proposed method. Experiments showed that our 
method can overcome the aforementioned difficulties 
and achieve satisfactory segmentation results. The 
experiments also demonstrated that the proposed 
SCR method established more reliable 
correspondences of MNFCs over the conventional 
iterative closest point (ICP) registration algorithm. 
Key words: fuzzy rules; iterative closest point; nerve 
fiber reconstruction; spatially constrained registration; 
Voronoi diagram; watershed 
 
 
 
 
 
 
 

1. Introduction 

The three-dimensional (3D) reconstruction of 
nerve fiber can provide an important structural 
information for assessing neurological diseases, nerve 
repair and regeneration. To reconstruct the nerve 
structure, segmentation of myelinated nerve fiber 
cross sections (MNFC) from a sequence of 
microscopic images is the most critical step because 
it greatly influences the reconstruction accuracy. 
However, few studies have discussed the issue of 
automatic MNFC segmentation. Since the context in 
MNFC images is comparable with some cell images, 
segmentation methods for nerve fiber and cell images 
were both addressed below [1-11]. Yousef et al. [1] 
proposed a hybrid method to segment cell nuclei. 
First, a graph cuts-based binarization was used to 
extract the foreground from the images. Next, a 
method combining a multi-scale Laplacian of 
Gaussian filter was applied to detect nuclear seed 
points. Using these points to perform an initial 
segmentation, the result was further refined by 
another graph cuts-based algorithm. Cheng et al. [3] 
presented a method to segment nuclei from 
fluorescence microscopic images. A level set 
evolution method was first used to detect the initial 
positions of nuclei, and then a marker-controlled 
watershed algorithm was hired to separate the 
clustered nuclei. In addition, our previous work [4] 
investigated the multi-scale gradient watershed 
hierarchies in order to segment MNFCs from 
microscopic cross-sectional images of nerve fibers. 
Although good segmentation accuracy was achieved, 
there were still some mis-detected MNFCs on the 
microscopic images. Overall, the above-mentioned 
methods were designed to segment cells or MNFCs 
from a single image frame. Since artifacts of 
specimen slicing or imaging may yield vague 
boundaries and/or irregularly distributed intensities of 
subjects in the acquired images, the single-frame 
segmentation methods which do not take the spatial 
relationship between inter-frame MNFCs into 
account are weak in handling these image artifacts.  

Rigid registration is commonly used to 
correlate two images by the use of an optimal 
geometric transformation. With the aid of registration, 
several registration-assisted segmentation methods 
have been proposed to improve the segmentation 
results from different image modalities [12-16]. 
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Gorthi et al. [14] used an active contour-based atlas 
registration model to segment the lymph node regions. 
Their model combined the dense deformation field 
between two structures with local segmentation 
constraints via an active contour segmentation 
framework. Chen et al. [15] proposed a 
registration-based method to automatically segment 
hand bones with an articulated model from 
multi-postural MR images. Zagrodsky et al. [16] also 
presented a registration-assisted method to segment 
the cardiac surface from 4D echocardiographic data 
and then visualized it at different phases of the 
cardiac cycle. However, to date there is still no 
efficient registration-based method for segmenting a 
large number of cells or MNFCs from  

The iterative closest point (ICP) registration 
[17] is a popular method for aligning two point sets 
due to its simplicity in implementation and efficiency 
in convergence. The ICP alternates two steps, one of 
which is intended to identify the point 
correspondences by the nearest points, and the other 
of which is to calculate the Euclidean distances 
between all pairs of corresponding points. Such an 
iterative optimization procedure continues until the 
sum of the Euclidean distances is minimized. 
However, since the ICP only utilizes the Euclidean 
distance as the registration feature, it may yield 
many-to-one or one-to-many correspondences during 
the registration process, resulting in a tendency for 
the ICP to be stuck in undesirable local solutions [18]. 
Thus, there were some reports trying to improve the 
performance of the ICP algorithm by adding 
additional features into the registration function for 
the purpose of establishing more proper 
correspondences between source and target points. 
Rogers et al. [19] adopted several features including 
the Euclidean distance, shape context, spot size and 
intensity to estimate the correspondences for point 
matching. Sharp et al. [20] investigated a 
feature-based ICP registration approach on range 
images, in which the selection of correspondences 
was based on the weighted linear combination of 
position and feature distances. However, incorrect 
decisions on correspondences may be made due to 
the lack of suitable weights to integrate these features. 
Determining a method by which to combine these 
features in order to obtain proper correspondences 
thus becomes an important issue.  

Fuzzy inference, which is a way of formalizing 
the reasoning process of human language, is 
frequently adopted to solve the aforementioned 
decision problem. Chung et al. [21] proposed a fuzzy 
rule-based method to model the variations of 
geometric transformations and features for elastic 
image registration. Kobashi et al. [22] proposed a 
fuzzy rule-based active contour and surface models to 
divide the cerebrum into cerebral lobes. Also, Chen et 
al. [23] handled nonlinear shape distortions in 
fingerprint images based on fuzzy theory. Although 
these studies do not present a direct solution to the 

automatic registration of cells or MNFCs, they give 
us inspiration leading to a supposition that the fuzzy 
inference system may be an efficient technique to 
integrate multiple registration features for 
establishing point correspondences. 

In this paper we propose a new 
registration-based method to automatically segment 
and reconstruct the 3D structure of nerve fiber from a 
sequence of microscopic cross-sectional images. The 
major features of the proposed method are described 
below. At first, we incorporate the biological 
knowledge of nerve fiber structure to design the 
spatially constrained registration (SCR) strategy in 
order to efficiently correlate inter-frame MNFCs. 
Moreover, compared to the conventional iterative 
closest point (ICP) method, the proposed method can 
establish more reliable correspondences of MNFCs 
by incorporating multiple MNFC geometric features 
in the registration process. In addition, we employ 
fuzzy logic to properly integrate these features for the 
purpose of assuring the correspondence of MNFCs 
between adjacent frames. At last, we develop a 
compensation mechanism based on inter-frame 
MNFC connectivity to improve the segmentation of 
MNFCs with missing cross sections. After the 
MNFCs of all microscopic images are segmented, the 
3D structure of nerve fiber can be reconstructed and 
visualized. The proposed method is near fully 
automatic and able to yield reproducible 
segmentation results from microscopic data sets. 

2. Image Preparation and 
Description 

The nerve fiber cross-sectional images in the 
present study were acquired from serially sliced 
frozen specimens of rat tibia nerves. A typical nerve 
fascicle cross section is outlined with the black thick 
contour in Fig. 1(a). In general, the structure of a 
MNFC can be specified by an axon (indicated by 
arrow 1) and its surrounding myelin sheath (indicated 
by arrow 2), and a large collection of MNFCs 
constitutes a nerve fascicle. Due to natural 
endoneurial spaces in the nerve fiber (indicated by 
arrows 3-5), the nerve fascicle in a microscopic 
cross-sectional image is usually divided into several 
sub-fascicles, as indicated by the black contours in 
Fig. 1(b). Such a biological phenomenon of nerve 
fiber structure, which is helpful for the registration of 
nerve fiber in microscopic images, is adopted in the 
proposed method. 
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Figure 1: Example of a myelinated nerve fiber 

cross-sectional image: (a) a cross 
section of a myelinated nerve fiber. 
Arrow 1 points out an axon, and arrow 
2 indicates its myelin sheath. A nerve 
fascicle is bounded by a continuous 
membrane as drawn in the black thick 
contour. The fascicle is divided into 
several sub-fascicles (as indicated by 
arrows 3–5) due to natural crack-like 
separations. (b) The manually drawn 
boundaries of each sub-fascicle. 

3. Method 

Segmentation and reconstruction of a 3D structure of 
nerve fiber are rather complicated because each 
microscopic cross-sectional image contains an 
enormous number of MNFCs while the MNFCs’ 
intensity appearances and positions are usually 
inconsistent between different cross sections. The 
proposed method combines image processing 
techniques, watershed segmentation and point 
registration algorithms to cope with these difficulties. 
Given a sequence of nerve fiber microscopic cross 
sections, we first adopt a single-frame 
watershed-based segmentation algorithm to segment 

MNFCs from each microscopic image. Next, we 
propose the SCR strategy to sequentially align each 
pair of adjacent image frames and establish the 
connectivityof inter-frame MNFCs. At last, a 
compensation mechanism is developed to recover the 
missing MNFCs. The 3D structure of nerve fiber can 
consequently be reconstructed based on the 
segmentation results for MNFCs. 
 
3.1 MNFC Segmentation from Each 

IndividualCross-sectional Image 
 

A method that mainly utilizes the multi-level 
gradient watershed scheme associated with three 
fuzzy systems is applied to each individual 
cross-sectional image for automatic segmentation of 
MNFCs. Since this method refers toour previous 
study [4], we only give a brief introduction here.In 
the multi-level gradient watershed scheme, 
pre-candidate MNFCs at each immersion level are 
extracted and then examined by the first fuzzy rule 
systemwith certain conditions. If the fuzzy output 
meetscertain conditions,the pre-candidate MNFCs are 
accepted as candidates. The second fuzzy system is 
then used to obtain the parameters of a rule-based 
active contour model for the refinement of 
boundaries of the MNFCcandidates. Finally, the third 
fuzzy rule system based on the intensity and 
geometric characteristics of MNFCs is used to 
confirm if these candidatesare true MNFCsor not. By 
applying the flexibility in the multi-scale watershed 
and the knowledge embedded in fuzzy rule systems, 
we can successfully handle the complications 
inherent in automatic segmentation of the MNFCs 
from each individual frame.  
 
3.2 Spatially Constrained Registration (SCR) 

Strategy 
 

Considering that the 2D watershed algorithm may 
mis-segment some MNFCs with vague boundaries or 
irregularly distribute intensities, we thus propose a 
SCR strategy to correlate inter-frame MNFCs in 
order to improve the segmentation results. As a full 
nerve fascicle is usually composed of several 
sub-fascicles, and each sub-fascicle is located with an 
individual geometric transformation, it is difficult to 
use only a global geometric transformation for 
characterizing the spatial relationship of the entire 
nerve fascicle between adjacent frames. The proposed 
SCR strategy resolves this difficulty byfirst globally 
aligning the full-fascicle cross sections on adjacent 
frames by the ICP algorithm, and then individually 
registering sub-fascicle cross sections by a new 
spatially constrained point registration (SCPR) is 
approached.  
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3.2.1 Full-fascicle Registration by ICP 
 

We first utilize the Canny edge detector to 
extract notable edges from each image frame. Then 
we adopt the ICP algorithm to register the edge points 
on two adjacent frames. Given a source point set

1{ } sN
i i==S s  and a target point set 1{ } mN

j j==M m , the 
ICP finds a rigid transformation T that best alignsS to 
M, where Ns and Nm denote the numbers of source 
and target points, respectively. The transformation 
Tis solved via an iterative optimization process based 
on the least square criterion: 

 

2
( ), ( ) {1,2,..., } 1

min || ( ) ||
s

m

N

i j ij i N i∈
=

−∑T
T s m  (1) 

 
Since a rigid transformation can be decomposed into 
a rotation matrix R and a translation vector t, Eq. (1) 
isrewritten as: 
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An efficient method to solvethe transformation 
parameters in Eq. (2) was suggested by Besl and 
Mckay [17]. Two processing steps are used to register 
the source data to the target. The first step is to find 
the correspondence between two point sets, and the 
second step is to calculate the transformation 
parameters,R and t. For the i-th point of source data S, 
its corresponding point in target data M, denoted as 
Ck(i) where k is the index of iteration, can be obtained 
based on therigid transformation ( , )k kR t between 
Sand M: 
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Note that, the transformation matrix at the first 

iteration is initialized as an identity matrix. Next, the 
rotation and translation 1 1( , )k k+ +R t at the (k+1)-th 

 

iteration are updated based on the correspondent

1{( , ( ))} sN
k ii  C i = : 
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After the ICP registration process, the adjacent 

image frames can be globally aligned by using the 
resulting registration parameters (i.e., rotation and 
translation).  

On the other hand, to capture the spatial offsets 
of sub-fascicles between different image frames, we 
have to delineate the sub-fascicle boundaries from 
each frame. In the proposed method, each 
sub-fascicle contour on the first frame is outlined 
manually and then propagated sequentially to all the 
other frames. The MNFCs enclosed by the 
sub-fasciclecontour are then regarded as in the same 
group. Occasionally, different sub-fascicles may be 
very close and have ambiguous boundaries (arrows in 
Fig. 1(b)), so visual examination and manual 
adjustments are needed to assure the partitions. After 
finishing the contour propagation from the first frame 
to the last, thepartitions of sub-fascicles on each 
frame can be obtained. 

 
 
 
 
 
 

3.2.2 Sub-fascicle Registration by SCPR 

This registration step aims at registering the 
MNFCs of the same sub-fascicle from frame u to 
frame u + 1, and also at establishing the connectivity 
between inter-frame MNFCs. Since the ICP 
algorithm identifies point correspondences only 
based on the Euclidean distance, it tends to yield 
incorrect MNFC correspondences so to establish 
unreliable inter-frame MNFC connectivity. The 
proposed point registration method, i.e. SCPR, is 
utilized to handle this problem and achieve the 
sub-fascicle registration. First, for each MNFC on 
frame u, we calculate three geometric features which 
indicate the fitness of correspondences with respect 
to the neighboring MNFCs onframeu + 1. Second, we 
establish the correspondences of MNFCs on frames u 
and frame u + 1 based on the inferring result of the 
fuzzy system whose inputs are the calculated features. 
Third, we solve the rigid transformation of the 
sub-fascicle by maximizing the sum of fuzzy values 
from all pairs of corresponding MNFCs. These three 
steps are iteratively performed until the difference 
between the transformations obtained in the current 
and previous iterations is smaller than a predefined 
threshold. 
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3.2.2.1 Calculating Geometric Features of MNFCs 
 
Let the MNFCs on frames u and u + 1 denote the 

source and target point sets S and M, respectively. 
Given two MNFCs, i.e., si andmj, the geometric 
features including overlapping ratio, center distance 
and neighborhood structural similarity are calculated. 
 

1). Overlapping ratio between MNFCs. The first 
feature is the overlapping ratio, which 
measures the spatial dependency between two 
MNFC regions on adjacent frames: 

 
( ) ( )

Overlapping region ratio
( ) ( )

i j

i j

    
∩

=
∪

O s O m
O s O m

 (5) 

 
whereO(si) is the i-th MNFC region on frames 
u, and O(mj) is the j-th MNFC region on 
frames u + 1. The value of this ratio should be 
high if the two MNFCs correspond with each 
other. 

 
2).Center distance. The second feature which 

measures the distance between the centers of 
two MNFCs is defined as 

 
Distance i j= -s m  (6) 

 
wheresi represents the coordinate of center of 
the i-th MNFC on frame u, and mj represents 
the coordinate of center of the j-th MNFC on 
frame u + 1. A pair of better corresponding 
MNFCs presents a smaller distance value. 
 

3).Neighborhood structural similarity of MNFCs. 
The third feature is the neighborhood 
structural similarity between two MNFCs. At 
first, we build the Voronoi diagram [24] to 
characterize the spatial relationship of the 
neighborhood of each MNFC on the image 
frame,as shown in Fig. 2(a). The centers of 
the MNFCs are indicated by the red points; 
their contours obtained from the watershed 
segmentation are in green, and the resulting 
Voronoi regions are separated with the red 
lines. For each MNFC, its neighbors can then 
be specified by the adjacent Voronoi regions. 
Next, a triangulation process, in which the 

centers of neighboring MNFCs are connected 
to each other, is carried out for the purpose of 
describing the neighborhood structure. Its 
implementation details can be referred to the 
Delaunay triangulation method [25]. Fig. 2(b) 
shows the resulting triangular mesh (as 
indicated by the blue lines), where each 
vertex represents a MNFC’s center. The 
direction and length of its one-ring edges are 
then used to describe the spatial relationship 
with respect to the neighbors. 

With the triangular meshes of MNFCs on 
frames u and u + 1, the third feature value is 
calculated by 

 

 
(a) 

 
(b) 

Figure2: Illustrations for Voronoi diagram 
(a), and triangular mesh (b) 
in a sub-fascicle. The red 
dots in (a) indicate the 
centers of MNFCs, and the 
green contours outline the 
MNFC regions. The red lines 
show the Voronoi diagram 
constructed from the 
MNFCs. The triangular 
mesh in (b) is shown with the 
blue lines. 

 
 
 

 

( ) ( )
Neighborhood structure similarity ( ) ( )i a j b

a Nei i ,b Nei j
   = - -

∈ ∈

−∑ s s m m  (7) 

 
 
where si represents the coordinate of center of 
the i-th MNFC, and sa represents the 
coordinate of center of the a-th neighbor of 
the i-th MNFC on frame u. mj represents the 
coordinate of center of the j-th MNFC, and mb 
represents the coordinate of center of the 

b-thneighbor of the j-th MNFC on frame u + 1. 
In the implementation, we at first utilized the 
ICP algorithm to align the neighbors of si and 
mj to obtain their one-ring neighbor 
correspondences for the calculation of Eq. (7). 
Here, mbis the closest point ofsa on frame u + 
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1 after the alignment. Consequently, we can 
measure the similarity of spatial distributions 
of neighbors for the MNFCs on adjacent 
frames. The fitness of better correspondence 
of MNFCs can be reflected in a smaller value 
for the structural similarity feature. 
 
3.2.2.2 Establishing Correspondence Based 

on Fuzzy Inference 
 

In this section, we illustrate how the three 
features are integrated by the fuzzy inference 
system to establish the correspondences of 
MNFCs for the registration process. A fuzzy 

if-then rule is expressed as “if x is A, then y is 
B, where A and B are fuzzy subsets.” In our 
proposed SCPR method, there are two levels 
for describing each feature value, and thus, 
totally there are eight rules to be hired, as 
summarized in Table I. For example, rule 1 
means: if the overlapping ratio is high, the 
center distance is small, and the structural 
similarity value is also small, so the fitness of 
the correspondence is high.  

We use the Zadeh’s method [26] to infer the 
rules as 
 

 
 
 
 

Table 1: Fuzzy rules used to define fuzzy value. 

Rule 1 If (O is High) ∧ (D is Short) ∧ (S is Small) Then B(y) is High 

Rule 2 If (O is High) ∧ (D is Short) ∧ (S is Large) Then B(y) is Low 

Rule 3 If (O is Low) ∧ (D is Short) ∧ (S is Small) Then B(y) is Low 

Rule 4 If (O is Low) ∧ (D is Short) ∧ (S is Large) Then B(y) is Low 

Rule 5 If (O is High) ∧ (D is Long) ∧ (S is Small) Then B(y) is Low 

Rule 6 If (O is High) ∧ (D is Long) ∧ (S is Large) Then B(y) is Low 

Rule 7 If (O is Low) ∧ (D is Long) ∧ (S is Small) Then B(y) is Low 

Rule 8 If (O is Low) ∧ (D is Long) ∧ (S is Large) Then B(y) is Low 

 

O = overlapping ratio, D = center distance, S = structure similarity value 
 

{ }
8

r r r r r r r
1 2 3 1 2 3r 1

B (y) min max[A (O) A (D) A (S) B (y), 1 [A (O) A (D) A (S)]] 
=

′ = ∧ ∧ ∧ − ∧ ∧  (8) 

 
where A1, A2 and A3 are the membership 
functions of the three features, respectively, 
and B is the output of the fuzzy system. The O, 
D and S note the overlapping ratio, center 
distance and neighborhood structural 
similarity value, respectively. The 
corresponding fuzzy sets A1, A2, A3 and B are 

illustrated in Fig. 3. Here, we denote B’(y) as 
the inferring result that minimizes the 
integrated value of the eight given fuzzy rules. 
As a result, the fuzzy value (FV) can be 
obtained by computing the center of gravity of 
B’(y), which is the integrated measurement of 
the three geometric features. 

 
 

65



Level 1 Level 2 

Membership function 

 

Variable Membership 
function 

Level 1 Level 2 

Overlapping ratio (O) A1 low high 
Distance between centers (D) A2 short long 
Structural similarity value (S) A3 small large 

Output value: The prob. of being a 
correspondence (y) B low high 

 

Figure 3: Fuzzy membership functions for overlapping ratio / distance between centers / structural 
similarity value / output value. 

 
In the registration process ofMNFC sets 

Sand Mon frames u and u + 1, the 
transformation matrix at the first iteration is 
initialized by an identity matrix. For the i-th 
MNFC on frame u, in order to find its best 
correspondence, we have to first include some 
candidates on frame u+1 for the calculation of 
FVs. The candidates are determined as the 
closest MNFC and all its neighbors. Then the 

correspondences 1{( , ( ))} sN
k ii  C i = at the k-th 

iteration can be obtained based on therigid 
transformation (Rk, tk): 
 
 
 
 

 
 

{ }, ( ) ( )
( )

( ) arg max FV (( ), ), ( ) {1, 2,..., }k i j i k i k j i m
j i

C i   j i N= ⋅ + ∈R s t m  (9) 

 
 
where FVi,j(i) represents the fuzzy value 
calculated from the i-th MNFC on frame u 
and the j(i)-th MNFC on frame u+1. The 
fitness of the correspondence is indicated by 
the FV, and the candidate with the maximal 
FV is finally selected as the best 
corresponding MNFC with respect to si. 
 
 
 
 
 
 

3.2.2.3 Solving the Registration 
Transformation 

 
After establishing the correspondences of 

MNFCs between frames u and u + 1,the 
registration transformation is then updated. At 
the (k+1)-th iteration, the rotation and 
translation 1 1( , )k k+ +R t  areupdated based 

on the correspondences 1{( , ( ))} sN
k ii  C i =

estimated from the k-th iteration: 
 

 
 
 
 
 

D
egree of m

em
bership 

function 
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where , ( )FV

ki C i  is the fuzzy value calculated from a 
pair of corresponding MNFCs at the k-th iteration. Eq. 
(10) is used to solve the optimal rigid transformation 
by maximizing the sum of FVs, which indicates the 
fitness of MNFC correspondences. Through the 
iterative three-step optimization procedure, the 
proposed SCPR can achieve the registration of 
sub-fascicles between arbitrary two adjacent frames.  

 

3.3 Compensation Mechanism for Recovering 
Missing MNFCs 

 
The previous watershed segmentation, however, 

may miss some MNFCs due to the artifacts of 
specimen slicing or imaging, as exemplified in Fig. 
4.Three sequential frames containing two MNFCs (a 
andb) are illustrated; MNFC a is successfully 
detected on all the three frames. However, MNFCb is 
detected only on frames 1 and 3,and is missed on 
frame 2. To deal with the situation as MNFC b, we 
thus design the compensation mechanism based on 
MNFC connectivity to recover the missing MNFCs. 

The compensation mechanism includes two 
stages, which are a dummy MNFC creation and 
validation. In the creation stage, if an MNFCon frame 
u does not have a corresponding MNFC on frameu+1, 
then a dummy MNFC is createdand is placed on 
frame u+1 ( 1_ MNFCud + ). Note that, if there is no 
MNFC on frameu+1 in an area fifteen pixels from 
the corresponding center of a MNFCon frame u, it is 
classified as the one without correspondence. In the 
given example, we hence create a dummy MNFC bon 
frame 2 based on the registration transformation 
between frame 1 and frame 2. In the validationstage, 
the MNFCon frameu+2 is backward mapped to frame 
u+1, and a dummy MNFC ( 1_ MNFCud +′ ) is thus 
created in a similar way. The existence of this 
dummyMNFC is considered valid if the overlapping 
ratio of 1_ MNFCud +  and 1_ MNFCud +′  is 
larger than a predefined threshold (0.8 in the 
experiments), whichis discarded otherwise. The 
center of the valid dummyMNFC on frame u+1 is 
given by the average of center positions of 

1_ MNFCud + and 1_ MNFCud +′ . Its contour is 

specified by the average shape of 1_ MNFCud +

and 1_ MNFCud +′ . Consequently, we are able to 
regain the missing MNFCs based on the 
compensation mechanism that takes the inter-frame 
MNFC connectivity into account. 

 

 
 (a)frame 1 (b)frame 2 (c)frame 3 
Figure 4: Example of mis-segmentation of 

MNFC: (a)-(c) represent three 
consecutive frames. MNFC a is 
successfully segmented on the three 
frames; however, MNFC b is missed 
on the intermediate frame. 

 
Since there are certain shape deviations 

between the valid dummyMNFCs and the image, we 
hence employ the active contour model (ACM) 
algorithm [27] to refine the shapes of the 
dummyMNFCs to better fit the true boundaries on 
frame u+1. The contour of each valid dummy MNFC 
serves as the initial of the ACM. The ACM 
deformation that iteratively adjusts the contour points 
toward the true MNFC boundaries is achieved by 
minimizing the following energy function: 

 

( )
1

0
( ( )) ( ( ))ACM internal externalE E v s E v s ds= +∫  (11) 

 
wherev(s) represents the coordinate of  a point on 
the contour model; Einternal is the internal energy and 
Eexternal is the external energy. 

 
 

The internal energy, which is used to control 
the continuity and smoothness of the model boundary, 
is formulated as 
 

2 2| ( ) | | ( ) |( ( )) ,internal
m

v s v sE v s
s

′ ′′+
=  (12) 

 
wheresmis a constantfor normalization, and v’(s) 
andv’’(s)are the first and second derivatives of the 
contour model, representing the continuity and 
curvature at v(s), respectively. As the MNFCs are 
supposed to be smooth and circular in shape, the 
internal energy can be used to avoid unreasonable 
model distortions and maintain shape smoothness 
during the deformation process. On the other hand, 
the external energy used to attract the model to the 
MNFC boundaries is defined as 
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where▽I(v(s)) indicates the gradient component of 
intensity of v(s) along the outward-pointing normal of 
the model boundary. Imax and Iminrepresent the 
maximal and minimalintensities along the normal, 
respectively, and their difference is used asa 
normalization term. The external energy is used to 
capture the MNFC boundaries, which are expected to 
appear in the transition from low to high intensity. 
After the compensation process is accomplished, we 
are able to reconstruct the 3D structure of nerve fiber 
based on a consecutive sequence of segmented 
MNFCs, as shown in Fig. 5. 
 
 

(a) 
 

(b) 
Figure 5: Reconstruction results of 3D structure 

of the nerve fibers segmented from 
two different image sequences. 

4.Results and Discussion 

The following experiments include accuracy 
and performance evaluations. The evaluation works 
were achieved by applying the proposed 
segmentation algorithm to twomicroscopic imagesets 

of rat tibia nerves, one of which consistsof eight 
image frames, and the other of which contains 
fiveones. The two nerve image sets contain five and 
one sub-fascicles, respectively. As different 
sub-fascicles in the same nerve fiber may still have 
their own biological characteristics and show 
respective intensity variations, the number of 
experiment samples (5 sub-fascicles × 8 cross 
sections + 1 sub-fascicle × 5 cross sections) should be 
acceptable. Two experts were consulted to obtain the 
ground truth manually in the validation experiments. 
The MNFCs,which were less than ten pixels in area 
or had boundaries that were too vague, were excluded 
in the experiments. 

 
4.1Accuracy Evaluation of The Proposed 

Method 
 

The aim of this experiment was to evaluate the 
detection rate of MNFCs obtained by the proposed 
registration-based segmentation method. The 
detection rate was defined as the ratio of number of 
true positive MNFCs to the total number of the 
ground truth, which was obtained from the manual 
detection results from two experts. For each 
intermediate frame of the image sequence (i.e., 
excluding the first and last frames), we measured the 
detection rate of MNFCs from each sub-fascicle and 
then averaged the detection rates of each sub-fascicle 
for all images. The averaged detection rate for each 
sub-fascicle is shown in Table 2. Overall, the 
proposed method achieved a very high detection rate 
of 91.8%. Compared to the results (around 93.3 %) of 
Fok’s work [28], which segmented the nerve fibers of 
human brain, our method shows comparable results. 
Moreover, the number of MNFCs they handled in 
each image was smaller than fifty, which is 
considerably less than ours with several hundreds of 
MNFCs in each image. As a whole, the proposed 
method not only shows great accuracy with regard to 
MNFC segmentation, but also demonstrates a good 
capability of handling the segmentation of a large 
number of MNFCs. 

 

 
Table 2: Accuracy evaluation of the proposed method. 

 
 

  Averaged detection rate (%) 
 
 

Image sequence 1 

Sub-fascicle 1 (8 cross sections) 89 
Sub-fascicle 2 (8 cross sections) 93 
Sub-fascicle 3 (8 cross sections) 91 
Sub-fascicle 4 (8 cross sections) 93 
Sub-fascicle 5 (8 cross sections) 92 

Image sequence 2 Sub-fascicle 1 (5 cross sections) 93 
Std. 1.62 

Mean 91.8 
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4.2 Performance Evaluation of the 
Proposed Method 

 
4.2.1 Correctness of MNFC Correspondences 
 

In this experiment, a comparison study was carried 
out to evaluate how the proposed SCPR method can 
establish more reliable MNFC correspondences over 
the conventional ICP algorithm. We examined the 
correctness of MNFC correspondences obtained by 
the two registration methods referenced above. A 
quantitative evaluation was achieved by calculating 
the correspondence correctness ratio (CCR), which is 
obtained by dividing the number of true positive 
correspondences (NTPC) by the number of true 
correspondences (NTC). The NTC represents the 
number of true correspondences between MNFC 
pairs, inspected manually by the experts referred 
above. The NTPC is the number of MNFC 
correspondences of the automatic detection results 
which are consistent with the correspondences of 

ground truth. A higher value of CCR indicates a 
better accuracy and reliability of correspondence 
establishment. 

 
There were five and one sub-fascicles in image 

sequences 1 and 2, respectively. Performances of the 
proposed SCPR and the conventional ICP methods 
were evaluated by calculating the CCR of the 
sub-fascicle on all adjacent frames. The evaluation 
results are listed in Table 3, in which the average 
CCR of the proposed method shows superiority over 
the conventional ICP. Such an improvement is 
because the proposed method utilizes multiple spatial 
features, including overlapping ratios, 
center-to-center distance, and neighborhood structural 
similarity, with regard to searching for the 
correspondences of MNFCs, whereas the 
conventional ICP takes only the closest point 
distances into account.  

 

 
Table 3: Performance comparison between the proposed SCPR and conventional ICP by correspondence 

correctness ratio (CCR). 

 

4.2.2Recovery rate of missing MNFCs 

In this experiment, we illustrated how the 
proposed registration-based segmentation method can 
improve the MNFC segmentation results, which were 
obtained by the single-frame watershed-based 
method from our preliminary study [4]. At first, we 
demonstrated an example in Fig. 6 for illustrating the 
effectiveness of the proposed idea in recovering the 
missing MNFCs. As shown in this figure, using the 
previously developed method can achieve good 
segmentations for most MNFCs. However, certain 
artifacts in the specimen slicing process will lead to 
vague MNFC boundaries (as indicated in the middle 
part of Fig. 6(b)), making the pure 2D watershed 
segmentation prone to mis-detections. After the 
proposed MNFC compensation process, we 
recovered 16 missing MNFCs (around78%) as shown 
in Fig. 6(c). Obviously, the final segmentation result 
obtained by the proposed registration-based method 
seen in Fig. 6(d) has been much improved over the 
original seen in Fig. 6(b). 

 

Beyond the qualitative demonstration, we also 
evaluated the recoveryperformance via a quantitative 
experiment. We defined a recovery rateas the ratio of 
number of successfully recovered MNFCs to the 
number of missing MNFCs in a sub-fascicle. For 
each intermediate frame in the image sequence, i.e., 
excluding the first and last frames, the recovery rate 
could be calculated. For the five sub-fascicles,the 
average recovery rates of the six intermediate frames 
on the first image sequence were 65%, 32%, 62%, 
56% and 76%, respectively. The average recovery 
rate of the three intermediate frames in the second 
image sequence was 71.5%. The improvement of the 
segmentation results after the recovery process was 
notable. Therefore, the performance of the proposed 
compensation mechanism has been confirmed in 
some sense. 

 

  CCR obtained by  
SCPR (%) 

CCR obtained by 
conventional ICP (%) 

 
 

Image sequence 1 

Sub-fascicle 1 (8 cross sections) 88 85 
Sub-fascicle 2 (8 cross sections) 92 90 
Sub-fascicle 3 (8 cross sections) 95 93 
Sub-fascicle 4 (8 cross sections) 94 90 
Sub-fascicle 5 (8 cross sections) 94 78 

Image sequence 2 Sub-fascicle 1 (5 cross sections) 93 89 
Std. 2.50 5.32 

Mean 92.6 87.5 
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(a) (b) 

  
(c) (d) 

Figure 6: Performance evaluation of the proposed 
method: (a) MNFCs of a sub-fascicle in 
the original image; (b) the segmentation 
result for a purely 2D multi-scale 
watershed [4]; (c) the recovery results 
for MNFCs (blue) by using the proposed 
registration-based segmentation; (d) the 
final segmentation result for MNFCs. 

5.Conclusion 

In this paper we proposed an inter-frame 
registration-based segmentation method by which to 
obtain the 3D structure of nerve fiber from sequential 
microscopic cross-sectional images. The proposed 
method first segmented the MNFCs from each single 
image frame by using the multi-scale watershed 
hierarchical approach. Then we designed the spatially 
constrained registration (SCR) strategy, which takes 
image, geometric and biological structural features of 
MNFCs into account in order to register adjacent 
image frames and obtain the correspondences of 
inter-frame MNFCs. With the established 
connectivity, the proposed compensation mechanism 
efficiently recovered the missing MNFCs, certainly 
improving the segmentation results. The experimental 
results showed that the proposed method is more 
reliable on correspondence establishment than the 
ICP algorithm. Moreover, it achieved high 
segmentation accuracy with a detection rate of 91%. 
In the future, the proposed method can be applied to 
solve other image segmentation problems with a 
large number of cellular objects. Our system, which 
is near fully-automatic, can also help clinicians or 
researchers to efficiently collect reproducible data for 
investigating cell mechanics and evaluating 
neurological disorders. 
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