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Abstract 

Bubble defect inspection is an important step in 

light-emitting diode (LED) packaging processes. It is 

difficult to detect bubble defects because bubbles are 

transparent and have irregular shapes in LED sealing 

glue images. Traditionally, experienced engineers 

visually check defect regions and exclude defective 

elements. However, the inspection processes are 

costly and time-consuming. This paper proposes an 

automatic bubble defect inspection method for LED 

sealing glue images. The system automatic locates 

the sealing glue region. A decision tree is adopted to 

outline regions of interest (ROI), and many textural 

and geometric features are extracted from the ROIs. 

A support-vector-machine (SVM) is used to classify 

the ROIs as acceptable or defective. Experimental 

results demonstrate effectiveness of the proposed 

approach.  

Keywords: light-emitting diode, defect inspection, 

decision tree, support-vector-machine 

1. Introduction 

Since the invention of the lighting equipment, 

lighting has become an indispensable product. LED is 

a semiconductor device that emits visible light. 

Compared with traditional illuminating devices, the 

features of LED have smaller volume, lower power 

requirements, higher efficiency, and a longer lifetime. 

 

 

 

 

 

 

Figure 1 shows a LED product and its component 

structure. There are many types of defects in the 

silicone encapsulant, such as short shot, flash, 

damage, and bubble. However, inspecting LED 

surface defects by human eyes is inefficient. In 

industrial manufacturing, most defects can be 

detected by using the automatic detection system. 

There have been many methods proposed for 

defect inspection [1-4]. Li et al. applied a 

wavelet-based algorithm for the inspection of 

multicrystalline solar images [1]. They used the 

wavelet coefficients to distinguish local defects and 

also to enhance the discriminant features using the 

wavelet’s energy differences in two consecutive 

decomposition levels. Liu et al. proposed a defect 

detection method based on two-dimensional discrete 

wavelet transformation [2]. The defects were detected 

by comparative reconstructed standard images and 

test images. This method alignment and structure 

affect the results. In addition, an incorrect standard 

wafer image may result in inspection mistakes. Li et 

al. proposed a level-set method for LED wafer 

inspection [3]. They utilized the zero-level contours 

for segmenting wafers. Defects were detected by 

textural and geometric features. However, they are 

rather complex and time-consuming processes. Chiou 

applied the decision tree to select a proper image 

segmentation method for detecting defects [4]. 

However, the proposed detection method is only 

suitable in a simple image. 

 

 

 

 

 

 

*Corresponding Author: Chuan-Yu Chang 
(E-mail: chuanyu@yuntech.edu.tw) 
1Department of Computer Science and Information Engineering, 

National Yunlin University of Science and Technology, 123, Sec.3, 

University Rd., Douliou, Yunlin, 640, Taiwan 

66



International Journal of Computer, Consumer and Control (IJ3C), Vol. 3, No.3 (2014) 

 

 

(a) 

 

(b) 

Figure 1: (a) LED product and (b) Basic LED 

structure. 

 

Most methods are based on the analysis of the 

differences of textural and geometric features. Since 

LED sealing glue images have a large area to be 

inspected, a system requires a long time to calculate 

the textural features for each pixel. However, it is 

difficult to detect the limpid and inconstant bubble 

defects. Therefore, this paper develops a method to 

detect bubble defects by geometric features in LED 

sealing glue images. 

Since the LED silicone region is a smooth 

surface, it is important to build a single and uniform 

light source capture environment to reduce noises. 

Before applying the algorithm, first, the silicone 

encapsulant was segmented, which is a transparent 

layer on the LED structure. Next, decision tree is 

applied to analyze bubble, edge and background 

region to obtain the potential defect regions. The 

features of potential defect regions were extracted, 

and then these features are classified by the SVM. 

Finally, the positions of the bubble are represented. 

This paper is organized as follows: In Section 2, 

the approach for LED bubble defect inspection is 

described, including preprocessing, ROI extraction, 

feature extraction, and classification. Section 3 

demonstrates the experimental results. Finally, 

conclusions are given in Section 4. 

 

 

 

2. Bubble Defect Inspection 

Figure 2 shows the flowchart of the proposed 

method. There are four major steps in the proposed 

method. Details are described as follows: 

 

 

 

 

 

 

 

 

 

 

Figure 2: The flowchart of the proposed method 

 

2.1 Preprocessing 

As shown in Figure 1(a), a LED sealing glue 

image consists of three components: the background, 

the outer package region and the silicone region. 

Since bubble defects occur only in the silicone region, 

the purpose of the preprocessing is to segment the 

silicone region. 

The brightness of an LED sealing glue image 

can be divided into two parts. The darker area is 

background; and the lighter area is LED. Therefore, 

Otsu’s method is used to separate the LED sealing 

glue images into background and LED regions [5]. 

Otsu’s method is capable of finding an optimal 

threshold value from the distribution of an image. 

The algorithm finds an optimal threshold value to 

divide a LED sealing glue image into two groups, 

while the sum of variances of the two groups is the 

minimum. The optimal threshold is defined as the 

weighted sum of variances of the two groups: 

 )()()()(minarg 2211 ttwttwt
t

opt    (1) 
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where w1 and w2 are the probabilities of the two 

groups separated by t; σ1 and σ2 are the standard 

deviations of the two groups; t [0,L], and L is the 

image level. 

Figure 3(a) shows an original LED image. 

Figure 3(b) is the thresholding result by Otsu’s 

method. Since the white regions in the segmented 

LED image are not connected to the background 

region, it is easy to extract the complete background 

region by means of connected-component labeling. 

Figure 3(c) shows the segmented background region. 

Based on the segmented LED region, we can obtain 

the centroid of LED. And then extract the outer 

package region. The outer package region is a 

donut-like circle with radius from 120 to 160 pixels. 

Figure 3(d) shows the centroid of the LED and the 

outer package region. 

 

  
(a) (b) 

  
(c) (d) 

Figure 3: Background segmentation: (a) the 

original image; (b) result of Otsu’s 

method; (c) detected background, 

and (d) LED centroid and outlined 

outer package region. 

 

Since the silicone region cannot be determined 

by a threshold value, the adaptive thresholding 

method is adopted to segment silicone region. The 

adaptive thresholding method can suppress the 

influence of illumination [6]. The adaptive threshold 

value is computed as: 
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where f(x, y) is the gray intensity of pixel (x, y). 

If the pixel intensity is lower than the threshold 

value, then it is set to 0, otherwise it is set to 1; that 

is: 
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Figure 4(a) shows the segmented regions by 

adaptive thresholding. In order to obtain completely 

segmentation results, a morphological closing 

operation with a 9×9 structuring element is applied. 

Then the resulting image is converted negatively as 

shown in Figure 4(b). Figure 4(c) shows the outer 

package region and parts of the silicone region. The 

two regions are not connected. Figure 4(d) is the 

negative of Figure 4(c), and it excludes the 

background region.  A complete silicone region is 

obtained by removing the non-silicone region and 

filling holes. Figures 4(e) and 4(f) show the detected 

silicone region and the silicone region in the original 

image. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e)  (f) 

Figure 4: (a) Adaptive thresholding result (b) the 

negative of (a); (c) outer package 

regions; (d) the negative of (c); (e) the 

silicone region, and (f) the silicone 

region in original image. 
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2.2 Subjective Characteristics of Elderly 

Speech 

The bubble defects are circular and transparent 

with different sizes. According to the property of 

bubbles, we can use the decision tree to classify them 

into three classes: 1) edge, 2) interior of bubble and 3) 

background.  

A decision tree is a method to represent 

information by a machine learning algorithm [7]. All 

the training patterns are outlined manually by 

experienced engineers. Four features are then 

extracted by using a n×n sliding window from each 

training pattern: 

1). M(x, y): the mean of pixel intensity in the 

window. 

2). Std(x, y): the standard deviation of pixel 

intensity in the window. 

3). R(x, y): the ranked position of the center 

pixel in the window. 

4). FR(x, y): the red component of the center 

pixel in the window. 

In the training phase, each class selected 900 

patterns for training and 300 patterns for testing. 

After the training process, the decision tree model 

was obtained as shown in Figure 5. Figure 6 shows 

the classification results of Figure 4(f) by decision 

tree. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Result of decision tree 

 

 

(a) 

 

(b) 

 

(c) 

Figure 6: Classification of the silicone region: (a) 

the edge regions; (b) the interior of 

bubble regions and (c) the LED 

background regions. 

 

 

 

By observing the interior of bubbles, we could 

exclude non-bubble defect regions. The minimum 

bounding rectangle (MBR) is the smallest rectangle 

which encloses potential defect regions completely. 

Yang proposed a fast calculation of a minimum area 

exterior rectangle method [8]. The method is used to 

determine the spindle, which is the inertia according 

to the rotary inertia of an object. MBR can be 

obtained by using image rotation with the edge and 

spindle of the object. Therefore, we eliminated the 

regions in which the MBR aspect ratio is greater than 

2.5, and the length of a longer side is greater than 55 

pixels. 
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Figure 7(a) shows the locations of potential 

defects, which had excluded non-bubble defect 

region. Therefore, the potential defect regions 

extracted correspond to these internal of bubble 

regions, as the green rectangles shown in Figure 7(b). 

The potential defect regions will be processed in next 

step. 
 

 

(a) 

 

(b) 

Figure 7: (a) Potential defects and (b) potential 

defect regions 

 

2.3 Feature Extraction 

The purpose of feature extraction is to obtain 

features to discriminate between defects and 

non-defects. In order to enhance performance of the 

identification, the potential defect regions are 

transformed to the polar coordinate system. The polar 

coordinates (r, θ) can be calculated from the 

Cartesian coordinates by: 
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where (Xo , Yo) is the origin, (Xp, Yp) is the position in 

the Cartesian coordinates. 

Figures 8 (a2)-(d2) show the transformation 

results. The horizontal axis is the angle [0, 2π], and 

the vertical axis is the radius distance. Obviously, the 

bubble defects and normal regions in a polar 

coordinates system are different.. 

In general, bubble defects have a similar 

appearance. Let PH and PV denote the horizontal 

projection ratio and vertical projection ratio, 

respectively. The PH and PV are defined as 
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where  ,iB  is the intensity at the polar coordinate 

 ,i , R is the length of radius, and Nr is the number 

of non-zero value in the transformed image B. 

Since bubble defects are concentrated in a 

small range of the vertical projection. A factor P is 

calculated to evaluate the concentration of the 

vertical projection 
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In general, the bubble defects have small value 

of P. 

 

 

(a1) 

 

(a2) 
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(b2) 

 

(c1) 

 

(c2) 

 

(d1) 

 

(d2) 

Figure 8: (a1)-(d1) Potential defect regions, and 

(a2)-(d2) Potential defect regions at the 

polar coordinate. 

 

2.4 Inspection Algorithm 

The similarity measurement was applied to 

compare the feature of horizontal projection ratio 

between two histograms. Three similarity 

measurements described below are calculated. 

Chi-square distance, 
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Bhattacharyya distance,  
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where H  and H   denote the horizontal projection 

histogram of bubble template and potential defect 

region, respectively.  

The three distances and factor P are aggregated as a 

feature vector as 

],,,[ Pddd IBCv
 

(11) 

The SVM has been widely used in many 

pattern recognition problems [9,10]. It finds a 

hyperplane to classify patterns into two classes. 

Assume that a set of vectors D belongs to two 

separable classes, 
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The hyperplane can be represented as 
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where 
i  is the weight parameter, 

iv  is support 

vector, l is the number of support vectors, σ is 

bandwidth and b is a bias. 

In the training phase, 60 training patterns, 

including 30 defect patterns and 30 non-defect 

patterns, are selected. The non-defect patterns were 

selected from potential defect regions. And the best 

model was selected by two-fold cross-validation. 

After the training phase, the SVM model can be 

obtained and processed. Figure 9 shows the structure 

of the SVM classifier for bubble defects 

classification. 

 

 

 

 

 

 

 

Figure 9: The structure of the SVM classifier. 

 

 

3. Experimental Results 

The proposed method was implemented by 

Microsoft Visual Studio 2008 C# on an Intel Core i7 

3.4GHz processor with 4GB RAMs. There are two 

LED sealing glue image databases captured from 

different light sources (white and red) with the same 

LEDs. Each database contains 120 LED images 

including 75 images with bubble defects and 45 

images without bubble defect. Figure 10 shows 

examples of the two databases. The average 

inspection time of the proposed method was 1.2s per 

image. Three experiments were conducted in this 

paper. 

 

3.1 Potential Defect Detection Under 

Various Window Sizes 

In the proposed method, potential defect 

regions were detected by decision tree. To find the 

best setting for window size, four sizes of window 

(3×3, 5×5, 7×7 and 9×9) were used for feature 

extraction. In this experiment, there exist 148 bubble 

defects in the 25 LED sealing glue images. Table 1 

presents the experimental results under different 

window sizes. The result shows that the window with 

size of 7×7 can detect the most bubble defects. Four 

bubble defects were missed. These undetected bubble 

defects are usually blurred and insignificant with 

sizes less than 10×10 pixels. Therefore, the window 

with a size of 7×7 was selected in the subsequent 

experiments. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 10: Example of LED sealing glue images: 

(a) Normal LED image captured from 

red light source; (b) Defective LED 

image captured from red light source; 

(c) Normal LED captured from white 

light source, and (d) Defective LED 

image captured from white light 

source. 

 

Table 1: Potential defect detection result 

Window 

size 

# of potential 

bubble defects 

# of undetected 

bubble defects 

3×3 3253 62 

5×5 4219 16 

7×7 3759 4 

9×9 3477 18 

 

3.2. Bubble Defect Detection 

In order to evaluate the performance of the 

proposed method, the sensitivity, specificity and 

accuracy were calculated. Assume Np is the actual 

number of bubble defects. The Nn is the actual 

number of normal regions. Ntp is the number of actual 

defective regions that the system detects. And the Ntn 

is the number of actual normal regions that the 

system detects. The sensitivity, specificity and 

accuracy are defined as follows. 
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80 LED images captured from white and red 

light sources were used for testing. Table 2 shows the 

bubble defect detection results under different 

lighting sources. The system detects more potential 

defect regions from the LED images captured from 

white light source. This factor causes the experiment 

to have high false positives and take longer time to 

detect defects. Table 3 presents the performance. 

These values demonstrate that the proposed method 

can detect bubble defects with high sensitivity. The 

result shows that the whole classification accuracy in 

red light is better than that in white light. Figure 11 

shows the bubble defect detection results. Bubbles 

are outlined by rectangles, and the green rectangles 

outline the real bubbles; the blue rectangles are over 

detected defects. These false positive regions are 

usually located on the edge or shadow regions, as the 

blue rectangles shown in Figure 11(a). Figure 11(b) 

shows the results are more robust and accurate with 

red light sources. 

 

Table 2: Confusion matrix of bubble defect 

detection. 

Actual 
Predicted 

Defect Normal 

Red light source   

Defect 126 14 

Normal 715 3915 

White light 

source 
  

Defect 122 18 

Normal 2456 6757 

 

Table 3: Performance of defect detection. 

Light source Sensitivity Specificity Accuracy 

Red 90.00% 84.58% 84.72% 

White 87.14% 73.34% 73.55% 
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3.3 Compared with other methods 

In the image, the bubble can extract shape 

features for identification. Since images use different 

segmentation methods to segment the bubble, the 

results of segmentation image are not the same. That 

could affect the efficiency of the identification results. 

This experiment used different segmentation 

algorithms to compare defect inspection. The popular 

edge detectors including Sobel and Canny edge 

detectors and Otsu’s method were selected for 

comparison with the proposed approach. 

Table 4 shows the performance comparison of 

four segmentation methods. There are 140 bubble 

defects and 4630 normal regions which are the 

potential defect regions in 40 LED sealing glue 

images. In the proposed method, the sensitivity and 

specificity is 0.9 and 0.85, respectively. Although 

Canny’s method has a higher accuracy, its sensitivity 

is less than the proposed method, which means 

Canny’s method cannot detect bubble defects 

accurately. As shown in Table 4, these values 

demonstrate that the effectiveness of the proposed 

method can efficiently inspect the bubble defects in 

the LED sealing glue images. 

 

 

(a) 

 

(b) 

Figure 11: (a) the detected bubble defects from the 

white light source, and (b) the detected 

bubble defects from the red light 

source. 

 

 

 

 

 

Table 4: Performance comparison of the four 

segmentation methods. 

 Canny Sobel Otsu 
Propose

d 

Defect region     

 
Defect 65 111 114 126 

Normal  75 29 26 14 

Normal region     

 
Defect 269 1032 987 715 

Normal 4361 3598 3643 3915 

Sensitivity 0.46 0.79 0.81 0.9 

Specificity 0.94 0.78 0.79 0.85 

Accuracy 0.92 0.78 0.79 0.85 

4. Conclusions 

LED can be produced quickly with automatic 

manufacturing systems. Automatic visual defect 

inspection plays an important role with the benefits of 

low-cost and high accuracy. This paper proposed a 

bubble defects detection scheme for LED sealing 

glue images. The silicone region was extracted so 

that the region needed to be inspected was reduced, 

and thus the defect regions were determined. The 

positions of potential bubble defects can be obtained 

by using decision tree. The SVM is applied to 

classify the potential defects into defect and 

non-defect. The experimental data show that LED 

sealing glue image in red light source has higher 

accuracy than in white source. The results show that 

the proposed method is effective to detect bubble 

defects on LED sealing glue images. 
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