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Abstract 

This paper describes a novel method for 

enhancing ocean optical images using weighted filter 

and spectral properties. While light is traveling 

through the water, light rays are distorted depending 

on the wavelength. Absorption, scattering and color 

distortion are three major distortion issues for 

underwater optical imaging. Scattering is caused by 

large suspended particles, as in turbid water that 

contains abundant particles, which causes the 

degradation of the captured image. Color distortion 

corresponds to the varying degrees of attenuation 

encountered by light traveling in water at different 

wavelengths, causing ambient underwater 

environments to be dominated by a bluish tone. Our 

key contributions proposed include a novel deep-sea 

imaging model to compensate for the attenuation 

discrepancy along the propagation path and an 

effective underwater scene reconstruction method. 

The recovered images are characterized by a reduced 

noised level, better exposure of the dark regions, and 

improved global contrast where the finest details and 

edges are enhanced significantly. 

Keywords: deep-sea imaging; inherent optical 

properties; image reconstruction; ocean observation 

 

 

 

1. Introduction 

With the development of exploring the 

deep-sea by autonomous underwater vehicles (AUVs) 

and unmanned underwater vehicles (UUVs), the 

resolution of underwater images remains as a major 

issue. That is, how to acquire a clear underwater 

image is a question. From the 1960s, sonar has been 

widely used for detection and recognition of objects 

in oceans. Because of acoustic imaging principle, the 

sonar imaged images have many shortcomings, such 

as the low signal to ratio, low resolution et al. 

Consequently, optical vision sensors must then be 

used instead for short-range identification because of 

the low quality of images restored by sonar imaging 

[1].  

In contrast to normal images, underwater 

images suffer from poor visibility owing to the 

medium. The light is absorbed when sunlight is 

reflected by a water surface. Furthermore, light is 

also deflected and scattered by many particles in 

water. In addition, absorption substantially reduces 

the atmospheric light energy. The random attenuation 

of light primarily causes a hazy appearance, while the 

fraction of light scattered back from the water along 

the line of sight considerably degrades the scene 

contrast. In particular, objects at a distance of more 

than 10 meters are almost indistinguishable, because 

the colors are faded owing to the characteristic 

wavelengths that are filtered according to the water 
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depth [2]. Furthermore, a distinctive footprint of the 

light beam is typically left on the seafloor when an 

artificial light source is employed. 

In the last decade, there are some researchers 

focused on underwater image quality improvement. 

Y.Y. Schechner et al. exploited a polarization imaging 

method to compensate for visibility degradation [3], 

while Ancuti et al. used an image fusion method in a 

turbid medium to reconstruct a clear image [4]. Hou 

et al. combined a point spread function and a 

modulation transfer function to reduce the effects of 

blurring [5]. Ouyang et al. proposed bilateral filtering 

based on an image deconvolution method [6]. 

Although the aforementioned approaches can 

enhance the image contrast, these methods have 

demonstrated several drawbacks that reduce their 

practical applicability. First, the equipment for 

imaging is difficult to use in practice (e.g., a 

range-gated laser imaging system, which is hardly 

applied in practice). Second, multiple input images 

are required [7]. Third, they cannot alleviate color 

distortion very well. 

Instead of multiple input images, underwater 

scene reconstruction methods using a single image 

have been proposed. The ICA based on a dahazing 

method was first proposed by Fattal [8]. He estimated 

the scene radiance and derived the transmission 

image by a single image. However, this method 

cannot sufficiently process images with heavy haze. 

Then, He et al. [9] proposed a scene depth 

information-based dark channel prior a dehazing 

algorithm using a matting Laplacian. However, this 

algorithm requires significant computation time. To 

overcome this disadvantage, they also proposed a 

new guided image filter [10] with the foggy image 

used as a reference image. However, this method 

leads to incomplete haze removal. 

Hence, in this paper, we introduce a novel 

approach to enhance underwater images based on a 

single image to overcome the drawbacks of the 

conventional methods mentioned above. The 

organization of this paper is as follows. Section 2 

explains the ocean imaging model. Section 3 

describes the model for underwater image 

enhancement and proposes our guided trigonometric 

bilateral filter. Section 4 applies our proposed method 

for underwater optical images. Finally, Section 5 

concludes this paper. 

2. Underwater Imaging Model 

Artificial light and atmospheric light traveling 

through the water is the source of illumination in an 

ocean environment. Let suppose the amount of radiation 

light W(x) formed after wavelength attenuation can be 

formulated according to the energy attenuation model as 

follows: 
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(1) 

where )(xEW

  is the amount of illumination 

at point x, )(xE A
 is the amount of illumination of 

atmospheric light at point x, )(xE I
 is the 

illumination of artificial light, and Nrer is the 

normalized residual energy ratio. At the scene point x, 

artificial light reflected again travels distance L(x) to 

the camera forming pixel )(xI , },,{ bgr . D(x) 

is the scene depth underwater. We suppose the 

absorption and scattering rate is )(x , and artificial 

light )(xJ emanated from point x is equal to the 

amount of illuminating ambient light )(xEW


reflected, 
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(2) 

By following the improved Nayar-Narasimhan 

hazing model [13], the image )(xI formed at the 

camera plane can be formulated as, 
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where the background B represents the part of the 

object reflected light J , and ambient light 
WE is 

scattered toward the camera by particles in the water. 

The residual energy ratio )(xt can be represented 

alternatively as the energy of a light beam with 

wavelength   before and after traveling distance 

d(x) within the water )(xE residual
 and )(xE initial

 , 

respectively, as follows: 
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(4) 

where Nrer is the normalized residual energy ratio 

[14], in the Ocean Type I, it follows: 
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(5) 

Consequently, subscribing the Eq. (3) and Eq. (4), we 

can obtain: 
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(6) 

The above equation incorporates the light 

scattering during the course of propagation from 

object to the camera d(x), and the wavelength 

attenuation along both the light-object path L(x), 

scene depth D(x) and object-camera path d(x). Once 

the light-object distance L(x), scene depth D(x) and 

object-camera distance d(x) are known, the final 

clean image will be recovered. Figure 1 shows the 

diagrammatic sketch of the proposed model. 

 

 

 

 

 

 

Figure 1: Diagram of Shallow Ocean Optical 

Imaging Model. 

3. Underwater Image Improvement 

Methods 

3.1 Absorption and Scattering Removal 

 In Ref. [19], the author found that the red color 

channel is the dark channel of underwater images. 

During our experiments, we found that the lowest 

channel of RGB channels in turbidly water is not 

always the red color channel; the blue color channel 

is very significant [25, 27]. The reason is that we 

usually take artificial light in imaging. Although the 

red wavelength is absorbed easily through traveling 

in water, the distance between the camera and an 

object is not enough to absorb the red wavelength 

significantly. The blue channel may be the lowest. 

Consequently, in this paper, we take the minimum 

pixel value as the rough depth disparity. 

As mentioned in Eq. (6), light )(xJ reflected 

from point x is 
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We define the minimum pixel channel Jdark(x) for the 

underwater image )(xJ as 
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If point x belongs to a part of the foreground 

object, the value of the minimum pixel channel is 

very small. Taking the min operation in the local 

patch )(x on the scattered image )(xI in Eq. (6), 

we have 
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Since B is the homogeneous background 

light and the residual energy ratio 
)()( ydNrer  on 

the small local patch )(x surrounding point x is 

essentially a constant
)()( xdNrer  , the min value on 

the second item of Eq. (18) can be subsequently 

removed as 
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We rearrange the above equation and perform 

on the minimum operation among red and blue color 

channels as follows: 
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Therefore, the second item of the above 

equation is the dark channel equal to 0. Consequently, 

the estimated depth map is 
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Finally, the depth map can be obtained by, 
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In this subsection, we propose a guided 

trigonometric bilateral filter (GTBF) to overcome the 

occurrence of gradient reversal artifacts. The filtering 

process of the GTBF is first performed under the 

guidance of image G that can be another image or the 

input image I itself. Let Ip and Gp be the intensity 

values at the pixel p of the minimum channel image 

and the guided image, respectively, and wk be the 

kernel window centered at pixel k, consistent with the 

bilateral filter. GTBF is then formulated by, 
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where the kernel weight function )(GW can be 

written by 
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where 
k and 2

k are the mean and variance of the 

guided image G in the local window wk, and |w| is the 

number of pixels in this window. When both Gp and 

Gq are concurrently on the same side of an edge, the 

weight assigned to pixel q is large. When Gp and Gq 

are on different sides, a small weight will be assigned 

to pixel q. 

According to Nayar-Narasimhan hazing model, 

we can obtain the descattered image by 
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(a) (b) 

 

(c) 

Figure 4: Simulation result of absorption and 

scattering removal. (a) Artificial light 

adjusted image; (b) Absorption 

corrected result; (c) De-scattered 

result. 

 

3.2 3D Scene Reconstruction 

In Ref. [31], the authors reconstruct the 

underwater scene by two cameras. In this paper, we 

recover the 3d scene by single camera. During 

de-scattering, we obtained the scene disparity map, 

and we also got the de-scattered image. Therefore, we 

can reconstruct the scene by [32]. 

4. Experiments and Discussions 

The performance of the proposed algorithm is 

evaluated both objectively and subjectively by 

utilizing ground-truth color patches. Both results 

demonstrate superior haze removal and color 

balancing capabilities of the proposed method over 

the others. In the experiment, we compare our 

method with Schechner’s model, Bazeille’s model, 

Fattal’s model, Nicholas’s model, He’s model, Xiao’s 

model, Ancuti’s model, and Chiang’s model. Here, 

we select the best parameters for each model. The 

computer used is equipped with Windows XP and an 

Intel Core 2 (2.0 GHz) with 1 GB RAM. 

Figure 5 shows the results using different 

reconstruction methods. As first evaluation, the 

performance of the proposed method is compared 

with other methods in removing the haze-like objects 

in the water. Figure 4 illustrates this example using 

different dehazing methods. He et al.’s work [6] 

produces a comparable result in regions with heavy 

hazes. However, to overcome the depth jumps, the 

use of Laplacian matting is time consuming.  There 

exists many depth jumps in the transmission. In this 

work, the background light or ambient light is simply 

calculated by the 0.1% of brightest pixels values, 

which incurred the results containing also some 

hazes.  

Gibson et al.’s wiener filter based approach [26] 

can automatically refine the transmission by a locally 

adaptive wiener filter. This method also can be 

implemented for real time. However, it estimates the 

ambient light by a dark channel prior. It may cause 

the unpleasing result. The results also contain some 

hazes. Our transmission is much clear in the last row 

of Figure 5. 
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(c) (d) 

Figure 5: Results of different methods. (a) Input 

image. (b) He et al.’s method. (c) 

Gibson et al.’s method. (d) Our method. 

 

 

 

 

 

 

 

 

 

 

Figure 6: Reconstructed 3D underwater scene. 

5. Conclusions 

In this paper, we have explored and 

implemented novel image enhancement techniques for 

the shallow water optical image reconstruction. We 

have proposed a simple prior based on the difference 

in attenuation among the different color channels, 

which inspired us to estimate the transmission depth 

map. Another contribution compensated the 

transmission by a weighted guided trigonometric 

bilateral filter, which has the benefits of 

edge-preserving, noise removing, and the reduction in 

the computation time. Moreover, the proposed 

spectral-based underwater image colorization method 

successfully created colorful underwater distorted 

images that are better than the state-of-the-art methods. 

Furthermore, the reconstructed 3d scene is well 

performed. 
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