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Abstract 

Electrical Capacitance Tomography (ECT) 

image reconstruction is a nonlinear inverse problem 

with serious ill. Since sensitivity field in the sensor of 

an electrical capacitance tomography system is “soft 

field”, the “soft field” nature is ignored by the 

traditional image reconstruction algorithms for ECT. 

There is the bottleneck in improving the imaging 

accuracy for the algorithms. To solve the problem, a 

novel image reconstruction algorithm is developed 

with simulated annealing dual particle swarm 

collaborative optimization. In the algorithm, to 

eliminate the impact generated by the soft field nature 

of ECT sensitivity field, some image samples with 

typical flow patterns are chosen for training with 

LS-SVM. Under the training procedure, the 

capacitance error caused by the “soft field” nature is 

predicted, and then is used to construct the fitness 

function of the particle swarm optimization based on 

the capacitance error. To avoid falling into local 

convergence, the dual group cooperative-competition 

scheme is used. The diversity of particles is increased 

by intraspecific and intraspecific learning and 

competition. To speed up the convergence rate, the 

algorithm introduces simulated annealing ideas into 

particle swarm optimization, which adopts cooling 

process functions to replace the inertia weight 

function and construct the time variant inertia weight 

function featured in annealing mechanism. Therefore, 

the algorithm improves the globe convergence and 

convergence rate. Experimental results demonstrated 

that the proposed novel algorithm is featured in quick 

convergence rate and higher imaging precision. 

Keywords: Electrical Capacitance Tomography, 

Lotka-Volterra Model, Simulated Annealing, Least 

Squares Support Vector Machines, Particle Swarm 

Optimization. 

1. Introduction 

As one of the electrical process tomography 

imaging technologies, Electrical Capacitance 

Tomography (ECT) is featured in lower costs, 

no-irradiative and non-invasive methods, etc. and 

applicable to the visible measurement of two-phase 

and multiple-phase flows [1-4]. The principle of ECT 

can be described as: different objects have different 

permittivities. If the concentration and composition 

of the component phase is changed, the permittivity 

will change to fit the mixture. Variation in 

permittivity will cause the change of the capacitance 

measurements, and the capacitance measurements 

reflect the size and distribution of the medium phase 

concentration of the mixture. On this basis, a 

corresponding image reconstruction algorithm can be 

used to reconstruct the distribution of the test area of 

the pipeline. 

Because ECT is non-linearity, and the number 

of capacitances independently measured are much 

less than the number of pixels for image 

reconstruction, there is no resolution for the reverse 

problem. Furthermore, the sensitivity field of ECT is 

featured in "soft field", i.e. sensitivity not evenly 

distributed, and the reverse problem equation is in a 

seriously abnormal state [5]. Therefore, an image 

reconstruction algorithm has been the bottleneck for 

the further development of ECT, and a highly precise 

image reconstruction algorithm is required. 
The existing ECT image reconstruction 

algorithms can be divided into two main types: 

non-iterative algorithm and iterative algorithm. As one 

of the typical non-iterative algorithms, Linear Back 

Projection (LBP) is simple and quick, but unsatisfying 

in imaging precision. Therefore, LBP is only used as a 

qualification method [6]. Iterative methods include: 

Tikhonov regularization method, Landweber algorithm, 

Newton-Raphson algorithm etc [7]. Tikhonov method 

may cause detailed distortion of the reconstructed 

images due to over-smoothness of regularization 

functions. As a widely used method in recent years, 

Landweber returns satisfying results only with large 

number of iterations as to complex flow patterns. 

Newton-Raphson algorithm is featured in local 

convergence, but the iterative convergence can't be 

guaranteed if the initial value is selected appropriately 

or not. 
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In this paper, we introduce an image 

reconstruction algorithm with least squares support 

vector machine (LS-SVM) and Lotka-Volterra 

Annealing Dual Particle Swarm Collaborative 

Optimization (LV-ADPSO). The proposed novel 

algorithm is described as follows: firstly, we 

construct LS-SVM and excise the error between the 

capacitances arising from sensitivity matrix and the 

actual capacitance measurements; then based on the 

error, we constructed the fitness function and 

simulated annealing mechanism for the dual particle 

swarm collaborative optimization; finally, we search 

for the optimum solution for image reconstruction 

with LV-ADPSO. 

2. Electrical Capacitance 

Tomography System 

 
Figure 1: Constitutes of ECT system. 

 

As shown in Figure 1, ECT System is mainly 

consisted with three units: a capacitance sensor unit, 

a measurement and data collection unit, and an image 

reconstruction unit. By utilizing capacitive fringe 

effect, the sensor can produce a corresponding 

capacitance for a medium with certain permittivity. 

The combination of all sensing electrodes may 

provide multiple capacitance measurements, which 

can be taken as the projection data for image 

reconstruction. The capacitance measurement and 

data collection unit primarily function as rapidly, 

stably and accurately measuring minor capacitance. It 

changes in various arrays of electrode couples, and 

transmits the acquired data to a computer. This unit is 

mainly comprised of three modules: a capacitance 

measurement module, a data collection control 

module, and a communication module. The 

capacitance measurement module is used to realize 

the switching of CV (capacitance to voltage) to 

measure minor capacitance and effectively inhibit 

stray capacitance [8]. The data collection control 

module generally takes DSP as the control core and 

takes ADC for data acquisition. Data communication 

adopts USB2.0 Technology [9]. ECT image 

reconstruction unit is composed of two parts: 

hardware and software. Hardware indicates a 

general-purpose computer, and software indicates 

image reconstruction algorithm. 

ECT image reconstruction process includes forward 

and reverse questions to be resolved. As the forward 

question, capacitance values of all electrode pairs 

based on the permittivity distribution and excitation 

voltages of the known sensitivity field. The 

mathematic model of forward question of ECT is 

expressed as follows [7]: 

 

, ,( , ) ( , )i j i j

D

C x y S x y dxdy   (1) 

 

where ,i jC is the capacitance between the electrode 

pair of i-j,  ,x y  is the permittivity distribution on 

cross-section of pipes, , ( , )i jS x y is the sensitivity 

functions when the capacitance between electrode 

pair of i-j is distributed on the cross-section of pipe, 

and D is the electrode surface. It can be seen that the 

sensitivity of the electrode in a point is related to its 

position, namely the sensitivity is not evenly 

distributed within the sensitivity field, which is the 

so-called effects of "soft field". If the “soft field” 

nature is ignored, Equation (1) shall be linearized and 

discredited to get 

 

C S G   (2) 

 

where C is a normalization capacitance vector of m 

dimension, G is n dimension normalized permittivity 

distribution vector, i.e. the grey level of pixels for 

visualization, and S is m n  factor matrix, which 

reflects influence of medium distribution variation on 

capacitance C and is called as sensitivity matrix [10]. 

Note that, the matrix S is not truly constant, but varies 

with the actual permittivity distribution. Therefore, 

most of the image reconstruction algorithms are 

achieved  based on Equation (2) which is bound to 

have a greater approximation error. 

3. An Algorithm Design for ECT 

Image Reconstruction 

3.1 Particle Swarm Optimization 

Algorithm 

Particle swarm optimization (PSO) is a well 

known heuristic algorithm, which was first proposed 

by Kennedy and Eberhart in 1995 and was sourced 

from studies on food-catching of birds [11-13]. In 

PSO system, each alternative resolution is called as a 

"particle". Particles are co-exist and shall be 

optimized. That is because each particle should "fly" 

towards to a better position in the question space 

according to its own experiences to explore the best 

resolution. The mathematic expression of PSO is 

shown as follows [14]. 
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We presume that the space is D-dimension and 

total numbers of particles are N. Position of ith particle 

expressed as 
1 2( , ,..., )i i i iDX x x x ; The best position 

of the ith particle in "flying" history is 

1 2( , ,..., )i i i iDP p p p , presume the best value of 

( 1,2,..., )iP i N  is located at Pg; the variance rate of 

the ith particle is the vector of 
1 2( , ,..., )i i i iDV v v v ; 

position of each particle shall change according to the 

following equations: 

 

1 1

2 2

( 1) ( ) [ ( ) ( )]

[ ( ) ( )]

id id id id

gd id

v t v t c r P t x t

c r P t x t

       

  
 (3) 

  

( 1) ( ) ( 1)id id idx t x t v t     (4) 

 

Where, 
1c  and 

2c  are positive constant and called as 

speedup factor; 
1r  and 

2r  are the random number 

between [0,1]; w is called as inertia factor; i is the ith 

particle 1 i N  , and d  is dth dimension of each 

particle 1 d D  . The initial position and speed of 

particle swarm is generated at random, and then 

iterated according to Equations (3) and (4). The 

position variance range and speed variance range is 

separately ,max ,max,d dx x    and ,max ,max,d dv v    

The boundary value shall be taken if 
idx  or 

idv  of 

one dimension exceeds the boundary. 

 

3.2 Simulated Annealing Dual Particle 

Swarm Collaborative Optimization 

Only using the standard PSO algorithm for 

image reconstruction is difficult to find the optimal 

solution. If using standard particle swarm 

optimization algorithm to solve the high dimensional 

problems, the results often fall into local convergence. 

In order to get high resolution reconstructed image, 

the particles (i.e. permittivity distribution vector) GK 

must have a high dimension. 

Many studies have shown that the cause of 

local convergence is the loss of particle diversity 

[15-18]. In order to keep the diversity of particles, the 

novel algorithm introduces Lotka-Volterra model into 

PSO, and designs the dual particle swarm 

cooperative-competition scheme. Collaborative 

optimization of particle are affected by three major 

factors in the optimization process:[19] 1 Individual 

fitness of particles, 2 Living environment of particle, 

3 Competition among the particles. It takes full 

account of the various relationships between groups, 

and greatly increases the diversity of the particles. 

We presume the scale of A group is NA, and the 

scale of B group is NB. The position and velocity of 

ith particle which in the A group will change 

according to the following equations: 

 

 

 

 

1 1

2 2

3 3

( 1) ( ) [ ( ) ( )]

[ ( ) ( )]

[ ( ) ( ) 2 ]

i

A A A A A A

i i i i

A A A A

i g i

A A B A

i g g i

v t v t c r P t x t

c r P t x t

c r P t P t x t

       

   

   

 
(5) 

  

   1 ( 1)   A A

i it x t v t  (6) 

 

Where i is the ith particle 1  Ai N . ( )A

iv t  is 

the velocity of the ith 
 
particle in the A group. ( )A

ix t  

is the position of the ith 
 
particle in the A group. 

1
2.15Ac ，

2
1.03Ac . 

1

A

ir 、
2

A

ir  and 
3

A

ir  are random 

numbers between [0,1]. ( )A

iP t  is the best position of 

the ith particle in the "flying" history. ( )A

gP t  is the 

best of ( )A

iP t . 

The position and velocity of jth particle in the B 

group will change according to the following 

equations 

 

 

1 1

2 2

3 3

( 1) ( ) [ ( ) ( )]

[ ( ) ( )]

[ ( ) ( ) 2 ]

B B B B B B

j j j j j

B B B B

j g j

B B A B

j g g i

v t v t c r P t x t

c r P t x t

c r P t P t x t

       

   

   

 
(7) 

  

   1 ( 1)   B B B

j j jx t x t v t  (8) 

 

Where j is the ith particle 1  Bi N . ( )B

iv t  is 

the velocity of the jth 
 
particle which in the B group. 

( )B

ix t  is the position of the jth 
 
particle in the B 

group. 
1

2.15Bc ，
2

1.03Bc . 1

B

jr 、2

B

jr  and 3

B

jr  are 

random numbers between [0,1]. ( )B

jP t  is the best 

position of the jth particle in the "flying" history. 

( )B

gP t  is the best of ( )B

jP t . ( )gP t  is the best of the 

A group and B group, (i.e. image reconstruction of the 

current optimal solution) and it is according to the 

following equation[19]: 

 

      min , A B

g g gP t P t P t  (9) 

 

In particle swarm optimization process, each 

particle of two sub-groups are attracted not only by 

the globe best in own group and by the different 

globe best in another group. Thus, the diversity of 

particles is greatly increased However, blindly 

increasing the diversity of the particles will lead to 

lower convergence rate. Simulated Annealing 

algorithm is an another widely used iterative heuristic 

algorithm. The powerful feature is its intrinsic hill 

climbing capability [20-24]. In order to speed up the 

dual particle swarm collaborative optimization 

convergence speed, we introduce simulated annealing 

ideas into dual particle swarm collaborative 
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optimization which adopts cooling process functions 

to replace the inertia weight function and construct 

the time variant inertia weight function featured in an 

annealing mechanism. The cooling process function 

is as follow [25]: 

 

1
( ) tanh( ) ( 1)

1

tT t T t


     
 (10) 

 

Where Ω is a constant near to 1, and is a constant 

while t means numbers of iteration. Shown as in 

Equation (8), we replace ω in Equation (5) and 

Equation (7) with Equation (10) to construct timing 

inertia factor reducing with passage of time. 

 

 

1 1

2 2

3 3

( 1) ( ) ( ) [ ( ) ( )]

[ ( ) ( )]

[ ( ) ( ) 2 ]

B B B B B B

j j j j j

B B B B

j g j

B B A B

j g g i

v t T t v t c r P t x t

c r P t x t

c r P t P t x t

       

   

   

 

(11) 

  

 

1 1

2 2

3 3

( 1) ( ) ( ) [ ( ) ( )]

[ ( ) ( )]

[ ( ) ( ) 2 ]

B B B B B B

j j j j j

B B B B

j g j

B B A B

j g g i

v t T t v t c r P t x t

c r P t x t

c r P t P t x t

       

   

   

 

(12) 

 

3.3 Selection of Fitness Functions 

In order to overcome the “soft field” nature of 

ECT sensitivity field, some image samples with 

typical flow patterns are chosen for training with 

Least squares support vector machine (LS-SVM) 

[26-30]. Under the training procedure, the 

capacitance error caused by the “soft field” nature is 

predicted, and then is used to construct the fitness 

function of the particle swarm optimization based on 

the capacitance error. The fitness function is given as 

the following: 
 

 min    kF C S G C  (13) 

 

Where C  is the output when LS-SVM 

takes C as input. The fitness function uses the results 

predicted by LS-SVM so as to eliminate errors 

arising from different flow patterns under the fix 

sensitivity matrix S. 

 

3.4 Least Squares Support Vector 

Machine and Its Applications In 

Image Reconstruction 

As the "soft field" effect, for different flow 

patterns, the priori conditions of C  are different. 

Thus some image samples with typical flow patterns 

are chosen for training with LS-SVM. Under the 

training procedure, the capacitance error C  

caused by the “soft field” nature is predicted. 

Set number of sample images is n, the number 

of mesh cells of sensitive field is N, and then sample 

collection of LS-SVM is 
1

,



n

i i
i

G C . Where iG is 

the N-dimensional normalized vector,  iC R . The 

function estimate expression of the least square 

algorithm is as follows: 

 

 
1

( ) ,


  
n

i i

i

C G K x x b  (14) 

 

Where G  is the permittivity distribution 

vector to be predicted. 
 

( 1,2,..., ) i i n  is the 
support vector. b is the regression parameter. 

 , iK x x is the kernel function. There are many kinds 

of kernel functions. In this paper, we take the kernel 

function of radial basis (i.e. Gaussian) with higher 

regression capabilities which is defined as follows: 

 

 
2

2
, exp



 
  

 
 

i

i

x x
K x x  (15) 

 

Where, σ means Gaussian kernel parameter 

 

3.5 Algorithmic Process 

 

 
 

Figure 2: The algorithm flow process. 
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The algorithm flow process is shown as Figure 

2, where t is current iteration times. 

Step 1: LS-SVM exercise forecast stage, the 

capacitance error caused by the “soft 

field” nature is predicted. 

Step 2: Construct the fitness function according 

to Equation (13). 

Step 3: Initialize the two groups, set up 

parameters of two groups and 

initialize the position and velocity of 

each particle. 

Step 4: Evaluate particles and calculate the 

fitness function of each particle of 

two groups. 

Step 5: Refresh speed of particles of A group 

according to Equation (11) and refresh 

position of particles of A group 

according to Equation (6). Refresh 

speed of particles of B group 

according to Equation (12) and refresh 

position of particles of B group 

according to Equation (8). 

Step 6: Refresh the global best of particles of 

two groups according to Equation (9). 

Step 7: Check the termination condition, if the 

maximum number of iterations is met, 

complete the iteration and give the 

optimum position of particle (i.e. 

optimum solution); otherwise, go to 

step 4. 

 

4. Experiment and Analysis 

We select 8 electrode capacitance sensors to get 

28 separated capacitance measurements, and thus the 

input sample data of LS-SVM ix is 28-dimension. 

Capacitance measurements can be obtained with 

finite element methods. In finite mesh, we take 

triangle unit to mesh the imaging area into 800 units, 

and we take finite subdivision unit as the pixel unit of 

images, and the permittivity distribution G under all 

kinds of flow patterns of sample is an 800-dimension 

vector. 

 In order to validate effectiveness of the 

algorithm, we designed algorithm to make image 

reconstruction for typical flow patterns (i.e. core flow, 

bubble flow, laminar flow and circular flow), and 

then compared them with the imaging results of LBP 

algorithm, Newton-Raphson algorithm and 

Landweber algorithm. The experimental results are 

shown in Table 1. In the imaging area, the dark area 

is even medium of permittivity 40, and the other 

areas is air (i.e. permittivity 1.0). 

As shown in Table 1, we can see that position 

errors are much significant for LBP imaging results 

compared with the original. Imaging results with 

Landweber algorithm and Newton-Raphson 

algorithm are near to the original, but there are too 

many false images. Obviously, the quality of images 

obtained with designed algorithm is much better, 

because the resolution of images is much higher, and 

there is nearly no false image. 
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Table 1: Imaging results 

Original LBP Newton-Raphson Landweber Designed Algorithm 

 

     

     

     

     

      
 

When the quality of image is analyzed, the 

relative image error shall be used as an evaluation 

index of image quality, which is defined as follows: 

 




image

G G

G
 (16) 

 

Where G  is a permittivity distribution vector 

obtained with a reconstruction algorithm, and G  is 

permittivity distribution vector in the original. 
 

is 

a vector sample norm, which is taken as 2. 

 

Table 2: Image relative image error 

Original LBP Newton-Raphson Landweber 
Designed  

Algorithm 

1 

 

85.3% 

 

33% 

 

41.8% 

 

17.3% 

 

2 
 

87.6% 
 

37.6% 
 

40.2% 
 

20% 
 

3 

 

45% 71% 65% 41% 

4 87% 32.8% 40.1% 27% 

 

 

 

The experimental results of the relative image 

error are shown in Table 2, From Table 2 we can see 

that the quality of reconstruction image with the 

designed algorithm for all above flow types is 

significantly improved by comparing with LBP 

Newton-Raphson and Landweber algorithms. 

 

Table 3: Elapsed time 

Original LBP Newton-Raphson Landweber 
Designed  

Algorithm 

1 0.04s 
10.77s 

500 iterations 

3.61s 

100 

iterations 

5.3s 

60 

iterations 

2 0.04s 
11.12s 

500 iterations 

4.98s 

130 
iterations 

9.10s 

120 
iterations 

3 0.04s 
14.05s 

800 iterations 

7.28s 

200 

iterations 

10.55s 

130 

iterations 

4 0.04s 
12.18 

600 iterations 

33.7s 

5000 

iterations 

12.10s 

140 

iterations 
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The elapsed time required for reconstruction of 

the four different algorithms is shown in table 3. 

Obviously, LBP is the most fast because it is a 

non-iterative algorithm. The number of iterations for 

Landweber and Newton-Raphson algorithms are 

greater than that for the designed algorithm. This 

shows that the designed algorithm convergence is 

faster than that for Landweber and Newton-Raphson 

algorithms. 

5. Conclusions 

In this paper, we have introduced an ECT 

image reconstruction algorithm based on LS-SVM 

and LA-ADPSO. This algorithm can be divided into 

two stages: LS-SVM exercise forecast stage and 

LA-ADPSO search stage. In LS-SVM exercise 

forecast stage, in order to overcome the soft field 

nature of ECT sensitivity field, we took LS-SVM to 

exercise for the errors and apply exercise results to 

construct the fitness function of the particle swarm 

optimization. In LA-ADPSO search stage, we 

introduced Lotka-Volterra model into PSO, so the 

diversity of particles is great increased. We adopted 

cooling process functions to replace the inertia 

weight function and constructed the time variant 

inertia weight function featured in annealing 

mechanism. Meanwhile, it employs the LA-ADPSO 

procedure to search for the optimized resolution of 

Electrical Capacitance Tomography (ECT) for image 

reconstruction. The experimental results show that 

this algorithm is featured in quick convergence rate 

and higher imaging precision. 
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