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Abstract 

For a typical MIMO (Multiple-Input 
Multiple-Output) nonlinear dynamic system, fault 
detection and isolation usually aim at process faults 
with an assumption that actuator faults and sensor 
faults do not occur at the same time, which is not 
always the case. This paper uses Extended State 
Observer for real-time process fault detection and 
fuzzy inference for fault isolation. It then investigates 
the coupling relationship among process faults, 
actuator faults and sensor faults, and presents how a 
combination of different types of faults could lead to 
undetected faults or false fault detection and isolation.  
Finally, a method to isolate actuator faults from 
process faults is presented. A three-tank MIMO 
nonlinear system is used to help illustrate the 
presented fault detection and isolation techniques. 

1. Introduction 

The main function of an observer, also known 
as estimator, is to extract information of the otherwise 
immeasurable variables for a vast number of 
applications that include feedback controls and 
system health monitoring or fault diagnosis. Over the 
past few decades, two classes of observer design have 
emerged.  One relies on mathematical plant models 
to produce state estimates; the other uses available 
plant knowledge to estimate not only the state but 
also the part of the physical process that is not 
described in the plant model, i.e. disturbances. For 
the first class, however, it  requires an accurate 

 
 
 
 

mathematical model of the plant that is often 
unavailable in practice. In contrast, the second class 
provides practical state and disturbance estimation 
when significant nonlinearity and uncertainty are 
present in a dynamic system.  

The term “fault diagnosis” generally refers to 
fault detection and isolation (FDI).  The fault 
diagnosis for nonlinear dynamic systems using 
model-free or model-based approaches have received 
much attention lately [1-3]. The model-free approach 
relies on rich data collection to train neural networks 
in conjunction with the use of fuzzy inference system. 
Such an approach might be impractical, if not 
impossible, to collect rich experimental data. The 
model-based approach uses a linear or linearized 
model of the supervised system to generate a series of 
fault-indicating signals.  In particular, the 
observer-based FDI methodologies have been 
developed along with the observer theory, and some 
of them have been successfully applied to industrial 
processes [4-6]. To deal with the nonlinearity and 
uncertainty of a dynamic system, nonlinear fault 
diagnosis has recently become an active research 
topic. There have been many observer-based 
residual-generation methods for fault diagnosis in a 
nonlinear dynamic system. Frank in [7] first proposed 
a nonlinear identity observer approach for fault 
diagnosis, followed by a survey on diagnostic 
observers [8] and a survey on robust residual 
generation and evaluation methods used in 
observer-based fault detection [9]. Later, Isermann 
[10] presented the status and applications of 
model-based fault detection and diagnosis. 
Observer-based fault-diagnosis was applied to robot 
manipulators using a mathematical technique called 
algebra of functions to design the nonlinear 
diagnostic observer [11]. Adaptive observers [12] and 
nonlinear robust-based observer schemes [13-14] that 
both developed an algorithm to adjust the gain matrix 
of observer to track the fault parameters of the system 
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online have been applied to practical processes 
successfully.  Additionally, a new concept of 
practical optimality using disturbance estimation for 
health monitoring has been proposed [15]. However, 
the common drawback of these observer-based fault 
diagnosis methods is the dependency on detailed 
knowledge of the process represented by its 
mathematical model. 

In 2012, Lin [16] used Extended State Observer 
(ESO) for process fault detection of a nonlinear 
dynamic system assuming that the plant model is 
uncertain, either un-modeled or incorrectly modeled 
combined with unknown external disturbances.  
Nevertheless, the study was based on an assumption 
that neither actuator faults nor sensor faults occur at 
the same time as process faults. Zhang [17] 
investigated the issue of isolation of process faults 
and sensor faults for a class of nonlinear uncertain 
systems, but he did not address isolation of actuator 
faults and process faults perhaps due to complex 
coupling. This study investigated the issue of the 
coupling relationships among process faults, actuator 
faults and sensor faults, and proposed a method to 
isolate actuator faults from process faults. To better 
explain how a system behaves when combined types 
of faults occur at the same time, a strongly coupled 
MIMO three-tank dynamic system is used in this 
study. 

This paper is organized as follows. Section II 
briefly describes the concept of Extended State 
Observe (ESO). Section III describes the fault 
detection and isolation schemes demonstrated by a 
three-tank system. Section IV describes isolation of 
sensor faults via the ESO, followed by isolation of 
process faults and actuator faults in Section V.  
Finally, the study is concluded in Section VI. 

2. Extended State Observer 

2.1 Extended State Observer Design 
Consider a nonlinear dynamic system that can 

be described by 
 
   (1) 

 
 
 

Where y(n) denotes the nth time derivative of y, f, 
short for ( 1)( , , , , , )nf t y y y d−  , which is a lumped 
nonlinear time-varying function of the plant 
dynamics; and d is the unknown external disturbance; 
u is the system’s input and b is a constant. In all 
physical systems, f and b are both bounded. From 
fault diagnosis point of view, the f can be thought of 
lumped unknown un-modeled or incorrectly modeled 
dynamics combined with the unknown external 
disturbances. Instead of separating un-modeled 
dynamics from the disturbance, the term f in its 
totality is to be estimated as an extended state of the 
system, together with the states of the system. 
Normally, an observer only provides the state 
estimation; but with what is known as Extended State 
Observer (ESO) [18-21], and the term f is treated as 
another state and estimated in real time.  

Such additional information proves to be 
crucial for the FDI purposes, as will be shown in this 
paper. The ESO technique first developed by Han 
[18-19], however, is rather complex, and its 
implementation requires the adjustments or tuning of 
several parameters, which can be difficult and time 
consuming. Later, Gao [20] improved the ESO 
technique and made it more practical by using a 
particular parameterization method that reduces the 
number of tuning parameters to one. Such 
parameterized ESO has been successfully applied in 
many applications, particularly in the context of the 
Active Disturbance Rejection Control (ADRC) [21]. 

The main idea of ESO is to use an augmented 
state space model of (1) that includes f as an 
additional state.  Thus, (1) can be represented in 
state space form as 

 
(2) 

 
Where both f and η are assumed unknown. 
 

Alternatively, in the case of single output (i.e. 
y=x1), Equation (2) can be written in a matrix form as 
 

 
(3) 
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 

; 
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b
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The ESO can be expressed in a matrix form as 

 

 
(4) 

 
Or 
 

 
(5) 

 

Where L = [l1 l2] is the observer gain vector which 
can be obtained using any known method such as the 
pole placement technique. When it is properly 
selected, the ESO provides an estimate of the state in 
Eq. (3) (i.e. zi estimates xi, where i =1, 2), where ŷ is 
the estimate of system output y. More specifically, z1 
tracks the system output, while z2 tracks f which 
includes system internal dynamics and external 
disturbance. The choice of the observer gain vector L, 
originally consisted of a set of nonlinear gains 
[18-19], was simplified with linear gains so that it can 
be parameterized by solving the characteristic 
equation of the observer [20]. For instance, if gains 
are chosen as L = [2ωo ωo

2]T, then the characteristic 
polynomial of Eq. (4) becomes 
 

 (6) 
 
Where ωo is the observer bandwidth, which needs to 
be tuned in practice to ensure that the ESO operates 
effectively, and this is a complex argument (Laplace’s 
variable). In comparison with the original extended 
state observer, this is regarded as the improved 
extended state observer since the observer bandwidth 
is the only parameter needed to be tuned. The 
analysis of ESO was briefly given in [20]; a more 
elaborate account is given in [21]. For practitioners, 
however, perhaps it is just as interesting to see the 
various applications of ESO and their success in 
providing a practical solution in dealing with 
uncertainties [20, 22]. The estimation error of the 
ESO is described in the next section. 
 

 

2.2 Estimation Error Convergence 
In this section, the estimation error 

convergence is presented. Let 

.  

From (2) and (4), the observer estimation error for 
states x1 and x2 can be described as 
 

 
(7) 

 
Now let us scale down the observer estimation 

error  

by , i.e., let  

 

 
Then, (7) can be written as 
 

 
(8) 

 
Where  

 
 
Here A  is Hurwitz for L = [l1 l2] = [2ωo ωo

2].  
 
Theorem 1: Assuming ( ), , ,x u d dη   is bounded, 
then there exists a constant 0iσ > and a finite time 

1 0T >  such that ( ) 1,   1, 2,  0i it i t Tξ σ≤ = ∀ ≥ >∀  
and 0.oω >  
 
Note that 

 
for some positive integer k .The boundedness of 

( ), , ,x u d dη  (i.e. f ) means that the rate of change of 
the combined effect of internal dynamics and external 
disturbances is finite, which leads to an assumption 
that the combined effect and the control input are 
continuous. Here η is essentially the derivative of 
acceleration. In a typical motion system, η being 
bounded means that the force applied to the body 
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does not change infinitely within a very short period 
of time. In other words, the jerk (i.e. time derivative 
of acceleration) is finite. This is a reasonable 
assumption for a typical motion. 
 

Remark 1: The mathematical proof of 
Theorem 1 can be found in [16] that, in the absence 
of the plant model, the estimation error of the ESO as 
described in (4) is bounded and its upper-bound 
monotonously decreases with the observer 
bandwidth.  

As long as the bandwidth is sufficiently large, 
the ESO can be used to estimate the state as well as 
the extended state f which includes system internal 
dynamics and external disturbance. 

3. Case Study: Three-Tank System 

To illustrate how the presented ESO can be 
used to track a nonlinear dynamic system. A 
three-tank nonlinear dynamic system [3] as shown in 
Fig. 1 is used here as a case study. The system 
consists of three tanks (T1, T2 and T3) that are 
connected by three pipes. The system has two 
controlled inputs (pump flow rates), three measurable 
outputs h1, h2 and h3 (water levels), and three possible 
faults (pipe blockages). It is, indeed, a strongly 
coupled MIMO system. 
 

 

 

 

 

 

Figure 1: Schematic Diagram of the Three-Tank 
System 

 
Using the Torricelli’s law, the following three 

dynamic system equations can be obtained 
 

 

(9) 

 
Where 
AT is the circular cross-sectional area of each tank 
(assumed same for all); 
a1, a2, a3: the circular cross-section area of each pipe; 
s13, s32, s20: pipe flux coefficient; 
Q1, Q2: pump’s flow rate; 
h1, h2 and h3 denote the water level of tanks T1, T2 
and T3, respectively. 
The flux coefficient is between 0 and 1, where “0” 
and “1” represent complete blockage and no blockage, 
respectively. Equation (9) can be rewritten as 
 

 

(10) 

 
Where 

 

 

 
Let y(t) and u(t) be the system’s output and 

input vector, respectively, 
 

y(t)=[h1 h2 h3]T;    u(t)=[Q1 Q2 0]T (11) 
 
Where h1, h2 and h3 denote the water level (m) of 
tanks T1, T2 and T3, respectively, and Q1 and Q2 

denote the flow rate (m3/sec) of pumps 1 and 2, 
respectively. Essentially, the water levels are the 
system output variables, and the flow rates are the 
system input variables. The three possible blockage 
faults are process faults; the other two types of faults 
are actuator faults in the two pumps and sensor faults 
in measuring the output variables (the water levels in 
this case). Combining (9) and (10) gives 
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Where 

       

 

The f1, f2 and f3 are called the Generalized 
System Dynamics of tank T1, T2 and T3, respectively, 
and u(t) is the system’s inputs. Note that the constant 
bo can be determined by the system, which in this 
case, is simply the reciprocal of the tank’s area. 

Equation (12) can be represented in state space 
form as: 
 

 

(13) 

 
Where u(t) = [Q1 Q2 0]T is the system input, y = x1 = 
[h1 h2 h3]T is the system output, x2 = f = [f1 f2 f3]T is an 
augmented state, and ν is the time derivative of f.  
Rewriting (13) in matrix form  gives 
 

 
(14) 

 
Where 

, , ,  

   
and I is a three-by-three identity matrix. Note that the 

expression for C in (14) is for three outputs, while 

that for C in (3) is for single output.  

 

Employing the ESO design (using Eqs (2) - (6)), 
denoting y as the measured or actual output, ŷ as the 
estimated output, and incorporating the difference 
between the two outputs, the ESO in (13) can be 
rewritten as 
 

 
(15) 

 
 
 
 

The state space observer can be constructed as 
 

 
(16) 

 
Where 
z = [z1 z2]T (i.e. z1 = [z11 z12 z13]T ; z2 = [z21 z22 z23]T ) 
 

Equation (9) shows that a three-tank system 
consists of three simultaneous first-order differential 
equations. Thus, the observer gain matrix, L can be 
expressed as 
 

 

(17) 

 
With a chosen bandwidth ωo, the z vector can be used 
to estimate the system outputs and the system 
dynamics in real time. As stated in the Theorem 1, the 
ESO’s estimation error is upper-bounded and 
monotonously decreases with the bandwidth. Thus, 
with a sufficiently large bandwidth and as time 
proceeds, z1 quickly approaches y (i.e. h1, h2 and h3), 
and z2 approaches f (i.e. f1, f2 and f3).  In other words, 
z1 tracks the system’s outputs, and z2 tracks the 
un-modeled system dynamics combined with external 
disturbance. More specifically, as stated in (16) z1= 
[z13 z11 z12]T estimates the state variables x1 (i.e. the 
water level h1, h2 and h3), and z2=[z21 z22 z23]T 
estimates the extended state f (i.e. f1, f2 and f3). In 
other words, 
 

 
(18) 

 
3.1 Fault Detection by Means of the ESO 

For the given three-tank system, the process 
faults are the pipe blockage faults in s13, s32 and s20 as 
shown in Fig. 1. Traditionally, faults are considered 
detected when the outputs exceed the expected values 
by a preset tolerance. This approach, however, has 
some drawbacks in open-loop and closed-loop 
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controls. When using the ESO for closed-loop control, 
observing the system’s output does not provide useful 
information about the health of the system because 
the controller tries to augment the inputs in an effort 
to stabilize the system. Thus, the health does not 
surface until the system finally collapses. Using the 
ESO for open-loop control also encounters a problem 
before the system reaches its steady states.  In other 
words, an abrupt change on the system output does 
not necessarily mean the system is becoming faulty. 
Thus, solely relying on monitoring the system output 
could trigger a false alarm or miss detection of 
possible faults. 

It is worthwhile to note that the ESO’s unique 
feature is its ability to estimate the general system 
dynamics (i.e. the un-modeled system dynamics and 
unknown external disturbance) in real time, which 
provides crucial information for the presented fault 
detection technique. Our study found that the system 
outputs and the general system dynamics both exhibit 
abrupt changes as soon as a fault occurs. However, 
the rate of change on the general system dynamics is 
more profound. Furthermore, the system outputs 
potentially contain process faults (such as the pipe 
blockage faults), actuator faults (such as the actuating 
faults in the pumps), sensor faults or any combination 
of the faults. For this reason, our proposed fault 
detection scheme is primarily based on the general 
system dynamics f. More specifically, a fault is 
considered detected when the rate of change of 
general system dynamics, ∆f/f, exceeds the 
predetermined threshold value.  An example of 
multiple faults detection is shown below in Fig. 2 
where Δz21, Δz22 and Δz23 correspond to Δf1, Δf2 and 
Δf3, respectively. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Detection of multiple faults (s13 = 0.8 at t 

= 10 sec. and s32 = 0.6 at t = 20 sec.) 
 
3.2 Fault Isolation by Means of the ESO 

In addition to monitoring the system outputs, 
the system dynamics used for fault detection can be 
used for fault isolation. Referring to Fig. 2 when the 
first fault occurs at t=10 sec., if Δz21 (the ESO’s 
estimated ∆f1) is positive, Δz22 (the ESO’s estimated 
∆f2) is negative, and Δz23 (the ESO’s estimated ∆f3) is 
negative, then a blockage fault between tanks 1 and 3 
(i.e. s13) likely has occurred. When the second fault 
occurs at t=20 sec., if Δz21 is positive, Δz22 is negative 
and Δz23 is positive, then a blockage fault between 
tanks 3 and 2 (i.e. s32) likely has occurred. The 
observations suggest that some intuitive logic, better 
known as fuzzy logic, can be employed to isolate the 
faults.  

A fuzzy inference system (FIS) consists of 
input membership functions, output membership 
functions and the if-then fuzzy logic rules. Among 
them, constructing the proper input membership 
functions is critical, and can be most difficult if there 
is no prior knowledge about how input data are 
distributed.  The best way to determine data 
distribution is through the use of histograms. The 
FIS’s inputs variables are Δz21, Δz22 and Δz23 which 
are normalized to the range of [-1, 1].  The output 
variables are the degree of fault for s13, s32, s20, which 
are normalized to the range of [0, 1], where “0” 
represents complete fault, and “1” represents no fault. 
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4. Isolation of Sensor Faults 

The occurrence of a sensor fault typically 
causes a bias to occur in the measurements of the 
affected sensor. The sensor faults investigated here 
were introduced via an instantaneous numerical offset 
at a specific time after reaching the system’s steady 
state. 

The unique behavior of the sensor fault that 
distinguishes it from the actuator and process faults 
can be mathematically explained via the matrix 
algebra of the ESO: 
 

𝑧1̇ = 𝑧2 + 𝑙1(𝑥1 − 𝑧1) +  𝑏𝑏  
𝑧2̇ = 𝑙2(𝑥1 − 𝑧1)  (19) 

 
For multiple output systems with n variables, 

the variables x1, z1 and z2 are column vectors with n 
elements. Correspondingly, the observer gains l1 and 
l2 are n by n  diagonal matrices where each non-zero 
element represents the gain corresponding to a 
specific element of (x1 – z1). 

In the event of a sensor fault, the immediate 
change in one of the measured variables causes one 
of the elements of (x1 – z1) to become nonzero (as the 
ESO values previously matched the measurements, 
all elements in (x1 – z1) were zero). After 
multiplication by the diagonal gain matrix, the 
resulting vector also contains only one nonzero 
element, with the same index. More specifically, a 
remark can be made. 

Remark 2: if the i-th sensor experiences a fault, 
only the i-th elements of the observable state variable 
and the extended state variables are affected. 

A process or actuator fault usually affects 
values of more than one observable variables and 
extended state variables as calculated by the ESO.  
Isolation of process faults from actuator faults 
exhibits complex coupling effects for a typical 
MIMO system, such as the three-tank system. 
Isolation of process faults and actuator faults are 
discussed in the next section. 

 
 
 
 
 

5. Isolation of Process Faults and 
Actuator Faults 

5.1 Characteristics of Process and 
Actuator Faults 

In order to distinguish actuator and process 
faults, the way they affect the convergence of 
extended state variables calculated by the ESO must 
be examined. Process faults alter the dynamics of the 
system, and thus the final steady state values of the 
state variables (in this case the tank heights) are 
different. Actuator faults cause unexpected 
discrepancies in the system input and thus also result 
in different steady state variable values. However, 
due to the calculation method of the ESO, the steady 
state values of the extended state variables of z2 are 
also affected. At steady state, all time derivatives 
become zero and the ESO’s estimated values match 
the measured values, which cause (19) to reduce to 
the following:  
0 = z2 + l1(0) + bu (i.e. z2 = -bu) 

In the case of an actuator fault, values in vector 
u will be affected by the fault and deviate from the 
designed or expected theoretical values. However, the 
ESO will not know this and will still use the 
theoretical values. This will cause the elements of z2 
to converge to incorrect values, which do not match 
the steady state values of corresponding functions f1 , 
f2,…fn. Without the ability to compare z2 to f (as in 
most situations, f that represents plant dynamics must 
be assumed unknown), this discrepancy cannot be 
observed, and thus the only distinguishing 
characteristic of actuator faults is unobservable. 

Recall that a general nonlinear system that can 
be modeled by the ESO is expressed in the following: 
y(n )= f + bu 
Where y(n) denotes the nth time derivative of y,  f is 
essentially the extended state representing the lumped 
nonlinear time-varying function of the plant 
dynamics and external disturbances, u  is the system 
input and b is a constant which is related to the 
physical model. 
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The occurrence of a process fault causes a 
change in ‘f’ whereas an actuator fault causes a 
change in ‘u’. However, either type of fault results in 
a net change to the same variable, y(n)  which updates 
the system state. This makes it possible for both types 
of faults to produce very similar behavior in the 
system state and extended state variables in the case 
of a single fault, or cause the appearance of an 
undisturbed system with simultaneous actuator and 
process faults. Mathematically this fault ambiguity 
can be represented by ϵ: 
 

y(n  = f + bu + ϵ      (20) 
 
For actuator faults or process faults, ϵ represents a 
change in either the input b(u+ Δu) or the system 
dynamics f+Δf. The fact that ϵ could be either bΔu or 
Δf allows for either type of a single fault to produce 
similar states if bΔu=Δf or simultaneous faults 
resulting in a seemingly undisturbed state if bΔu=-Δf.   

Remark 3: For a typical MIMO nonlinear 
system, actuator faults, in general, cannot be isolated 
from process faults unless one or more additional 
sensor measurements are made. 

 
5.2 Utilizing an Outflow Sensor to Isolate 

Actuator Faults 
As discussed earlier, at least a sensor 

measurement must be added in order to resolve the 
ambiguity between process and actuator faults. 
Taking the presented three-tank system as an example, 
one can add an outflow sensor at the very end of the 
pipe (right outside the right hand side of tank 2) to 
measure the system’s net outflow. At steady state, 
conservation of mass dictates that the outflow of the 
three-tank system must be equal to the sum of the 
inputs Q1+Q2 (i.e. pump flow rates). The theoretical 
steady state value of this quantity is only dependent 
on system specifications, and the actual outflow must 
always converge to the theoretical value except in the 
event of an actuator fault. As no non-actuator fault 
can affect Q1 or Q2, measuring the net outflow allows 
for a means to isolate actuator faults. This concept 
will work only if the added outflow sensor itself is 
not faulty. In fact, there is a simple way to determine 
if the outflow sensor itself is faulty. After the system 

reaches the steady state, if the net outflow does not 
equal Q1+Q2, but there is no noticeable disturbance in 
the observable state and the extended state variables, 
then it is likely the outflow sensor is faulty. However, 
if the net outflow does not equal Q1+Q2, and there is 

noticeable disturbance in those variables, then there 
exists a fault in actuator 1 or 2. The only means to 
isolate one actuator fault from the other is to directly 
measure each actuator’s output. Actuator faults 
should be closely monitored because it affects the 
isolability of process faults. 

6. Conclusion 

The detection and isolation of process faults by 
means of extended state observer (ESO) and fuzzy 
inference have been presented. This study was 
conducted via the computer simulation in which the 
equations for the three-tank system were used to 
calculate the theoretical values. To simulate 
un-modeled dynamics, 5% to 10% of external 
disturbance was introduced. The ESO was found 
capable of filtering system noises and correctly 
detecting process faults even when the system was 
not correctly modeled (when using bo=635 as 
supposed to the exact value of 127). However, in 
reality, process faults could be accompanied by 
sensor faults and/or actuator faults. The coupling 
relationships among the three types of faults were 
investigated.  Among them, sensor faults can be 
easily detected and isolated. For a strongly coupled 
MIMIO nonlinear system, combination of process 
faults and actuator faults exhibits complex coupling 
effects because these two types of faults affect the 
values of both observable state and extended state 
variables. For the given three-tank system, a method 
for isolating actuator faults from process faults was 
presented. Future work includes developing a general 
methodology to isolate actuator faults from process 
faults for a strongly coupled nonlinear system 
without having to add additional measurements. 
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