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Abstract 

A large proportion of industrial systems are 

represented by linear time-invariant transfer functions. 

The proportional-integral -derivative (PID) controller 

is one of the most widely used functions. The 

lead-lag controller is a more practical alternative. 

Lead-lag-like controller can be lead-lead, lag-lead or 

lag-lag controller. This paper focused on the design 

of lead-lag-like controller by optimization of the 

time-domain objective function. A modified particle 

swarm optimization (MPSO) algorithm is chosen to 

find the optimal solutions. MPSO tries to force all the 

particles to search the optimum exhaustedly. The 

proposed objective function includes time-domain 

specifications, including the delay time, rise time, 

first peak time, maximum peak time, maximum 

overshoot, maximum undershoot, setting time and 

steady state error. Designers can make trade-offs in a 

variety of specifications. As long as the plant could 

be modeled as a linear time-invariant transfer 

function, the suggested method would design the 

lead-lag-like controller capable of approaching the 

desired specifications. Computer simulations show 

that the performance can be fully met or very close to 

desired. 

Keywords: Lead-lag controller, PID controller, PSO 

1. Introduction 

Most industrial systems can be represented by a 

linear time-invariant transfer function. Lead-lag 

controllers provide a more practical alternative. Quite 

a few typical methods have been proposed for tuning 

the PID controller parameters over the years [1-5]. 

More practical alternatives are lead-lag controllers. 

The design the lead-lag controller has been studied 

[6-8]. Particle swarm optimization (PSO) is one of 

the meta-heuristic techniques developed by Kennedy 

and Eberhart [9, 10]. Ou and Lin proposed a method 

based on GA and PSO to design the PID controller, 

and then compared the results [11]. Horng used 

 

 

 

 

 

greedy PSO to design lead-lag controller [12]. 

Modified particle swarm is inspired by the literature 

[13]. The center particle has capacity to get good 

solutions. Hence, the concept of center particle is 

included in velocity update formula of a modified 

particle swarm algorithm. 

In this paper, modified particle swarm 

optimization that uses a time-domain objective 

function to design a controller is proposed. If the 

plant could be modeled as a linear time-invariant 

transfer function, the proposed method can design a 

controller that approaches or meets the time-domain 

specifications. The objective function includes eight 

specifications, including delay time, rise time, first 

peak time, maximum peak time, percent maximum 

overshoot, percent maximum undershoot, setting time 

and steady state error. 

2. Time-Domain Specifications 

The time response of a control system is 

divided into two parts: the transient response and the 

steady-state response. Let y(t) denote the time 

response of a continuous system; then, in general, it 

can be written as 

)()()( tytyty sst  . 

Where )(tyt denotes the transient response, and 

)(ty ss  means the steady-state response. 

In control systems, transient response is defined 

as the part of the time response that goes to zero as 

time becomes very large. Therefore, )(tyt has the 

property 

0)(lim 


tyt
t

. 

The study of a control system in the time 

domain basically involves the evaluation of the 

transient and the steady-state responses of the system. 

In the design problem, specifications are usually 

given in terms of the transient and the steady-state 

performances. 

The transient response is certainly important 

because it is a significant part of the dynamic 

behavior of the system; and the difference between 

the output response and the input response, before the 

steady state is reached, must be strictly controlled. 

 

*Corresponding Author: Huey-Yang Horng 

(E-mail:  ) 
1 

63



International Journal of Computer, Consumer and Control (IJ3C), Vol. 4, No.2 (2015) 

 

The steady-state response is basically the part 

of the total response which remains after the transient 

has died out. 

Therefore, controllers are designed so that the 

specifications are all met by the designed system. 

 

2.1 Transient Response of Step Input 
For a general system, the following 

specifications will be considered: 

1).Delay time. The delay time dT defined as 

the time required for the step response to 

reach 50% of its final value )(ty ss . 

2).Rise time. The rise time rT  is defined as 

the time required for the step response to 

rise from 10 to 90% of its final value. 

3).First peak time, pT , Is the time to reach the 

first peak. 

4).Maximum peak time, mT , is the time to 

reach the maximum peak. 

5).Percentage maximum overshoot, OS% , is 

the amount that the maximum waveform 

overshoots the steady state value at the 

maximum peak time, expressed as a 

percentage of the steady-state value. 

6).Percentage maximum overshoot, US% , is 

defined as 
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7).Settling time, sT , is the time required for 

the step response to decrease and stay 

within a specified ±2% of its final value. 

Notice that, for second order system, the first peak 

time is always the maximum peak time. However, 

for the general system, they are not the same. For 

simplicity, in all of the examples in this article, these 

two values are set to the same. 

 

2.2 Steady-State Error 

One of the purposes of most control systems is 

that the system output response follows a particular 

reference signal accurately in the steady state. The 

error of the system may be defined as 

)()()( tytrte  , 

Where )(tr  is the input signal that the output )(ty  

is to follow. The steady-state error is defined as 

 )(lim)( tetE
t

ss


  

In unity negative feedback systems as shown in 

Figure 1, it is assumed that the closed-loop system is 

stable, which yields: 

 

.
)(1

)(
lim

0 sG

ssR
E

s
ss





 (1) 

 

 

G(s)

-

r(t) + e(t) y(t)

 

Figure 1: Unity negative feedback systems. 

 

Three test signals are used to establish specifications 

for a control system's steady-state error 

characteristics. 

1).Step-Function Input: The step-function 

input denotes an instantaneous change in the 

reference input. The mathematical 

description of a step function or magnitude 

R is 

0,0

0,)(





t

tRtr
 

Where R is a real constant. That is 

)()( tRutr s  

Where )(tu s  is the unit-step function. The 

Laplace transform of )(tr  is 
s

R
sR )( . 

2).Ramp-Function Input: The ramp function 

is a signal that changes regularly with time. 

Mathematically, a ramp function is 

represented by 

)()( tRtutr s  

Where R is a real constant. The Laplace 

transform of )(tr  is 
2

)(
s

R
sR  . 

3).Parabolic-Function Input: The parabolic 

function represents a signal that is one order 

faster than the ramp function. 

Mathematically, it is represented as 

)(
2

)(
2

tu
Rt

tr s  

Where R is a real constant. The Laplace 

transform of )(tr  is 
3

)(
s

R
sR   

Now let us consider the effects of the types of 

inputs on the steady-state error. In the study, only the 

step, ramp, and parabolic inputs are considered. 

 

(a) Step-Function Input. 
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(b)Ramp-Function Input. 
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(c)Parabolic-Function input. 
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The relation between the input, steady-state error, 
and system type is shown in Table 1. 

 
Table 1: Relationships between input, system type 

and Ess 

Input Type 0 System Type 1 System Type 2 System 

Step 

p

ss
K

E



1

1
 0,  ssp EK  0,  ssp EK  

Ramp  ssv EK ,0  

v

ss
K

E
1

  0,  ssv EK  

Parabola  ssa EK ,0   ssa EK ,0  

a

ss
K

E
1

  

3. Objective Functions 

The main purpose of most control systems is 

that the system output response follows a specific 

reference signal accurately all the time. It is well 

known that the time response of a control system is 

divided into two parts: the transient response and the 

steady-state response. In the real world, the steady 

state of the output response rarely agrees exactly with 

the reference. Therefore, steady-state errors in control 

systems are practically unavoidable. In a design 

problem, one of the objectives is to keep the 

steady-state error to a minimum, or below a certain 

tolerable value. Furthermore, the transient response 

must satisfy a certain set of specifications. The 

objective functions proposed is aimed at satisfying all 

the specifications of transient response and 

steady-state response listed above. For practical 

purposes, all of the time domain specifications have 

tolerance, i.e., lower bound (lb ) and upper bound 

(ub). 

First, define deviation ratio (DR) 
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(5) 

 

 

 

 

Where TDS is the time-domain specification, i.e. rise 

time, first peak time, maximum peak time, etc. 

Deviation ratio represents the measurement of the 

difference of the actual response to desired response. 

The proposed objective function is 
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(6) 

Where 



8

1i

iwTW . In equation (6), iw  represent 

weights reflecting the relative importance of the 

corresponding term. That is, the foregoing objective 

function is weighted deviation ratio of time-domain 

specifications. 

4. Lead-Lag-Like Controller 

The transfer function of proposed controller 

can be written as: 
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Where .0,0,0,0,0 21  TTK   If 

0,1   , the controller is lead-lead (or two-stage 

phase-lead) controller. If 0,1   , the controller 

is lead-lag (or lag-lead) controller. Moreover, if 

0,1   , the controller is lag-lag (two-stage 

phase-lag) controller. 

5. Particle Swarm Optimization 

Particle swarm optimization (PSO) is 

meta-heuristic techniques developed by Kennedy and 

Eberhart [9, 10]. 
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dd
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dd
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(7) 

)1()()1(  tVtXtX d

i

d

i

d

i  (8) 

 

In the above procedures, w  is inertia weight 

and set to 0.7. Furthermore, 21  , cc are constants 

known as acceleration coefficients, and their values 

are 1.7 according to past experiences.  

The center particle has capacity to get good 

solutions. More importantly, the center particle has 

more opportunities to become the best global swarm. 

Hence it can guide the whole swarm to favorable 

regions and accelerate convergence. Modified 

particle swarm (MPSO) is inspired by the literature 

[13]. The center particle has capacity to develop good 

solutions. Therefore, the concept of a center particle 

is included in velocity update formula. Notice that, in 

65



International Journal of Computer, Consumer and Control (IJ3C), Vol. 4, No.2 (2015) 

 

Equation 7, if d

gbest

d

pbest

d

i

d

i XXXtV   and,0)( , the 

particle will not move anymore. To overcome this 

drawback, the formula of modified particle swarm 

optimization is as follows: 

 

)()()()1( 2211 igcbestipbestii XXrcXXrctwVtV 
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The formulae try to force all the particles to search 

the optimum solution until the average of all the 

individual optimal value is equal to the global 

optimal value. For that reason, MPSO has the ability 

to approach better solutions. In the paper, μ is equal 

to 0.1 according to previous experiences. 

6. Design Procedure 

The main purposes of most control systems is 

that the system output response follows a specific 

reference signal accurately. In the following design, 

one of the objectives is to keep the steady-state error 

below a certain tolerable value and satisfy the 

specifications of transient response. The proposed 

objective function is listed in Equation 6. Hence, the 

problem of controller design now becomes the 

optimizing the proposed objective function. To design 

the controller, you must know the transfer function of 

the system and the type of system. First, the desired 

interval of steady state error is determined, then the 

gain K of lead-lag-like controller can be calculated 

using Equation 2 or Equation 3, or Equation 4. Next, 

the parameters of a controller, i.e. α, T1, β and T2 are 

set to the interval [0.01, 100]. To save computing 

time, the initial particles in this article are screened, 

so that they will let the closed loop stable. That is, the 

initial values of the controller randomly generated 

must be satisfied Routh-Hurwitz criterion [1, 2]. This 

design of the controller is divided into the following 

eight steps. 

 

1).Determine desired peak time and maximum 

overshoot. 

2).Draw sketches of response, and estimate Td, 

Tr, and Ts. 

3).Determine the upper limits of %OS, %US, 

and Ess. 

4).Set the maximum iterations to 1000. 

5).Randomly generated 30 initial particle. 

6)Establish lower and upper bounds of 

controller parameters. 

7).Run MPSO 30 times. Let i

gbestX be elite 

initial i

initialX . 

8).Run MPSO one more time to get final 

parameters. 

7. Illustrative Examples 

Three numerical examples for a unity feedback 

system are provided. First example, the plant is type 

0 system, second example the plant is type 1 system, 

and in final example the plant will cause the closed 

loop unstable. 

Example 1: Suppose the plant transfer function is 

given by 

.
4014

140
2 


ss

Gp
 

The step response of uncompensated system is 

shown in Figure 2. Here, the peak time is 0.2763 

seconds, the percentage overshot is 14.64%, and the 

steady-state error sse  is equal to 0.2222. 

 

GP(s)
-

R C+

 

Figure 2: Unity feedback system without 

controller 
 

 
Figure 3: Uncompensated system in Example 1 

 

 

GP(s)GC(s)
-

R C+

 
 

Figure 4: A unity feedback system with a 

controller 
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Clearly, the step response of a uncompensated 

system is not good. Hence, the controller is needed to 

improve the transient response as in Fig 3. Assume 

that both the first peak time and maximum peak time 

are 0.1 seconds, and maximum overshoot is 3%. 

According to peak time and maximum overshoot, 

draw sketches of response, and estimating other 

specifications, for example delay time, setting time 

etc. For some desired specifications, i.e. TP, Tm, Td, Tr, 

and Ts , give some tolerance, such as one percent. For 

the others, such as the maximum overshoot, 

maximum undershoot, and maximum steady state 

error, only the upper limits are given. Finally, the 

desired values and deviation ratios are listed in Table 

2. The plant in Example 1 is type 0 system. Then, the 

desired interval of steady state error is determined

022.0005.0  ssE , the gain K of lead-lag-like 

controller can be calculated using equation 2, i.e. 

5.87264.7952  K . The parameters of controller, 

i.e. α, T1, β and T2 are set to the interval [0.01, 100]. 

Then the MPSO is run 30 times to get elite 

group and use the elite group as initial particle to run 

MPSO one more time. At that moment, the design 

procedure is completed, and the controller parameters 

are K= 72.9705,   = 0.1699, 1T = 0.0739,   = 

24.8517, and  2T = 0.4625. The parameters of 

controller are listed in Table 3. The transfer function 

of controller is 

 

.
0.087)79.67)(s(s

2.162)13.54)(s17.281(s

)111.4939)(10.0126s(
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The controller is lead-phase (or lag-lead) 

controller. Moreover, the transfer function of the 

closed loop is 

 

.
2214) + 76.23s + (s 2.077)+(s 15.45)+(s

2.162)+(s 13.54)+(s 2419.3

)()(1
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The time-domain specifications and deviation 

ratio are listed in Table 4. In addition, the step 

response of a compensated system is shown in Figure 

4. The deviation ratio of rise time is 0.0302, and the 

other deviation ratio is zero. Suppose the rise time is 

very impotent. Then, the weight of DR(Tr) can be 

increases to 6, while keeping the other weights 

unchanged. That is 

 

.3for  1 and,63  iww i  

 

 

 

Redesign the controller. When the design procedure 

is completed, the controller parameters are K= 

74.6200,   = 0.0100, 1T = 99.9949,   = 0.0182, 

and  2T = 1.2745. The parameters of controller are 

listed in Table 3. The transfer function of controller is 

 

.
 43.19)+1)(s+(s 

 0.7846)0.01)(s+410740(s

)10.0232)(1s(

)10.0182)(199.9949s(74.6200
)(2



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


s

s
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The controller is lead-lead (or two-stage 

phase-lead) controller. Furthermore, the transfer 

function of the closed loop is 

 

.
)105.75 + 57.39s + (s 0.01004)+(s 0.7846)+(s

 0.7846)+(s 0.01)+(s105.7503
)(

72

7




sT

 

The time-domain specifications and deviation 

ratio are listed in Table 4. Besides, the step response 

of a compensated system is shown in Figure 4. The 

deviation ratio of rise time DR(Tr) is 0. But DR(Td) 

become 0.3, DR(Ts) is 0.08, and DR(Tp) is 0.0769. 

When designing controller design, it may not be 

satisfied with all the specifications. In this case, the 

designer needs to make trade-offs. 

 

Table 2: Example 1 desired value and interval of 

specifications 

Spec. Desired Value Interval 

TP 0.1 [0.0990, 0.1010] 

Tm 0.1 [0.0990, 0.1010] 

Tr 0. 5 [0.4950, 0.5050] 

Td 0.03 [0.0297, 0.0303] 

%OS 0.03 [0.0 0.03] 

%US 0.02 [0.0, 0.02] 

Ts 0.1 [0.0990, 0.1010] 

Ess 0.02 [0.0, 0.02] 
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Table 3: Example 1 parameters of controller 

Parameter Gc1(s) Gc2(s) 

K 72.9705 74.6200 

α 0.1699 0.0100 

T1 0.0739 99.9949 

β 24.8517 0.0182 

T2 0.4625 1.2745 

 

 

 

 

 

 

 

 

 

 

 

Table 4: Desired interval and deviation ratio in Example 1 

Spec. Interval Gc1 DRGc1 Gc2 DRGc2 

TP [0.0990, 0.1010] 0.0992 0 0.1074 0.0769 

Tm [0.0990, 0.1010] 0.0992 0 0.1074 0.0769 

Tr [0.4950, 0.5050] 0.0480 0.0302 0.0495 0 

Td [0.0297, 0.0303] 0.0303 0 0.0208 0.3000 

%OS [0.0, 0.03] 0.0285 0 0.0300 0 

%US [0.0, 0.02] 0.0200 0 0 0 

Ts [0.0990, 0.1010] 0.1008 0 0.1091 0.0800 

Ess [0.0, 0.02] 0.0039 0 0.0038 0 

 

 
Figure 5: Compensated step response in example 

1. 

 

Example 2: Suppose the plant transfer function is 

given by 

  .
)7017(

170
2 


sss

sG p  

 

 

 

 

 

 

 

 

 

The step response of a uncompensated system 

is shown in Figure 5. Here, the peak time is 1.1624 

seconds, rise time is 0.5382, maximum overshot is 

8.32%, and setting time is 1.2032 seconds. The 

steady-state errors for inputs is zero, and a ramp input

.0.4118 is  Then, let both the first peak time and 

maximum peak time are 0.7 seconds. In addition, the 

maximum overshoot is 3%. Following the same 

method as shown in Example 1, the desired value and 

interval of specifications are listed in Table 4. 

 
Figure 6: Uncompensated step response in 

Example 2. 
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Table 5: Desired Value and Interval of 

Specifications in Example 2 

Spec. Desired Value Desired Interval 

TP 0.7 [0.6930, 0.7070] 

Tm 0.7 [0.6930, 0.7070] 

Tr 0.35 [0.3465, 0.3535] 

Td 0.03 [0.1980, 0.2020] 

%OS 0.03 [0.0 0.03] 

%US 0.02 [0.0, 0.02] 

Ts 0.1 [0.7128, 0.7272] 

Ess 0.02 [0.0, 0.2] 

The plant in Example 2 is type 1 system. 

Therefore, the steady state error due to step input is 

zero. Let error due to ramp input is 0.2. Then, the 

desired interval of steady state error is determined

22.0008.0  ssE , and the gain K of lead-lag-like 

controller can be computed using equation 3, i.e. 

51.47061.8717  K . The other parameters of 

controller, i.e. α, T1, β and T2 are set to the interval 

[0.01, 100]. 

When the design procedure using MPSO is 

completed, the controller parameters are K= 48.9458,  

α= 26.3583, T1 = 12.8058,   β= 0.0100, and  T2 = 

0.1715. The controller parameters is listed in Table 7. 

The transfer function of controller is 

.
583)s0.002963)((s
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The controller is lead-lag (or lag-lead) 

controller. Furthermore, the transfer function of the 

closed loop is 

64.43) + 12.01s + (s 0.07943)+(s 4.816)+(s 583.1)+(s

0.07809)+(s 5.831)+(s 31566
)(

2
sT  

The time-domain specifications and deviation 

ratio are listed in Table 6. The step response of a 

compensated system is shown in Figure 7. Suppose 

the rise time is critical, which must be matched with 

the desired interval. Now the weights must be 

changed. The weight of DR(Tr) is increased to 6, but 

the other is unchanged. That is 

.3for  1 and,63  iww i  

Design the controller once more. When the 

design procedure is finished, the controller 

parameters are K= 1.9877,   = 0.0133, 1T = 

0.0265,  = 0.0325, and 2T = 0.1281. The controller 

parameters are listed in Table 7. The transfer function 

of controller is 

.
 240.1)+(s 2829)+(s  
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The controller is lead-lead (or two-stage 

phase-lead) controller. Furthermore, the transfer 

function of the closed loop is 

 

.
40.72) + 9.663s + (s 8.335)+(s 239)+(s 2829)+(s
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)(
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The time-domain specifications and deviation 

ratio are listed in Table 6. The step response of 

compensated system is shown in Figure 7. The 

performance fully meet the desired when the weight 

of DR(Tr) is increased to 6. 

Table 6: Example 2 parameters of controller 

Parameter Gc1(s) Gc2(s) 

K 48.9458 1.9877 

α 26.3583 0.0133 

T1 12.8058 0.0265 

β 0.0100 0.0325 

T2 0.1715 0.1281 

Table 7: Desired interval and deviation ratio in 

Example 2 

Spec. Interval Gc1 DRGc1 Gc2 DRGc2 

TP [0.6930, 0.7070] 0.7057 0 0.7057 0 

Tm [0.6930, 0.7070] 0.7057 0 0.7057 0 

Tr [0.3465, 0.3535] 0.3220 0.3465 0.3466 0 

Td [0.1980, 0.2020] 0.2020 0.0001 0.2016 0 

%OS [0.0 0.03] 0.0200 0 0.0296 0 

%US [0.0, 0.02] 0 0 0.0008 0 

Ts [0.7128, 0.7272] 0.7173 0 0.7173 0 

Ess [0.0, 0.2] 0.0084 0 0.2072 0 
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Figure 7: Compensated step response in Example 

2. 

Example 3: A unity feedback system has the 

following forward transfer function: 

.
)8)(4)(2(

600
)(




sss
sGp  

The closed-loop system is unstable. The step 

response of the a uncompensated system is shown in 

Figure 5. Now, let the first peak time is 1.5 second, 

and maximum peak time is 3%.  Moreover, the 

maximum overshoot is the same value. Following the 

same procedure as shown in Example 1, the desired 

value and interval of specifications are listed in Table 

8. Then the MPSO runs 31 times. When the design 

procedure is finished, the lead-lag parameters are K= 

5.8725, α= 50.4539, T1 = 1.0628, β= 0.0100, and T2 = 

0.1599. The controller parameters are listed in Table 

9. 

The transfer function of controller is 

.
 625.2)+0.01865)(s+(s

 6.252)+0.9409)(s+(s 11.639

)10.0016)(153.6226s(

)10.1599)(11.0628s(5.8725
)(1








s

s
SGc

 

The controller is lead-lag (or lag-lead) 

controller. Furthermore, the transfer function of the 

closed loop is 

9.739) + 4.624s + (s 0.9121)+(s 7.464)+(s 625.2)+(s

0.9409)+(s 6.252)+(s 6983.6
)(

2
sT

  

The time-domain specifications and deviation 

ratio are listed in Table 10. The step response of a 

compensated system is shown in Figure 9. The 

deviation ratio of delay time would be improved. 

 
Figure 8: Uncompensated step response in 

Example 3 

Table 8: Desired value and interval of 

specifications in Example 3 

Spec. Desired Value Desired Interval 

TP 1.5 [1.4850, 1.5150] 

Tm 1.5 [1.4850, 1.5150] 

Tr 0.8 [0.7920, 0.8080] 

Td 0.45 [0.4455, 0.4545] 

%OS 0.03 [0.0, 0.03] 

%US 0.02 [0.0, 0.02] 

Ts 1.5 [1.4850, 1.5150] 

Ess 0.01 [0.009, 0.011] 

 

We increase the weight of delay time to 6, and 

keep the others the same. Moreover, the lead-lag 

parameters are found, K= 6.3105, α= 55.2130, T1 = 

0.4292, β= 0.0010, and T2 = 0.4308. The controller 

parameters are listed in Table 9. The deviation ratio 

of delay time can be improved as shown in Table 10 

and Figure 9. Suppose the rise time is critical, and  

must be matched with the desired interval. Now the 

weights must be changed. The weight of DR(Tr) is 

increased to 6, on the other hand the other is 

unchanged. That is 

.3for  1 and,63  iww i  

Design the controller for a second time. When 

the design procedure is done, the controller 

parameters are K= 5.3206, α= 0.0100, T1 = 0.1100, 

β= 49.8062, and T2 = 1.1354. The parameters of 

controller are listed in Table 9. The transfer function 

of controller is 

.
 0.01768)+(s 909)+(s  

 0.8807)+(s 9.09)+(s 10.683

)156.5499)(10.0011s(

)11.1354)(10.1100s(5.3206
)(2








s

s
sGc
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The controller is lead-lead (or two-stage 

phase-lead) controller. Besides, the transfer function 

of the closed loop is 

 

.
8.43) + 3.994s + (s 0.8258)+(s 8.19)+(s 909)+(s

 0.8807)+(s 9.09)+(s 6409.6
)(

2
sT

  

The time-domain specifications and deviation 

ratio are listed in Table 10. The step response of a 

compensated system is shown in Figure 9. The 

deviation ratio of rise time DR(Tr) is 0. Nonetheless 

DR(Td) becomes 0.1520, DR(Ts) is 0.0555, and 

DR(Tp) is 0.0391. In this case, the designers must 

make trade-offs in a variety of specifications.. 

Table 9: Example 3 parameters of controller 

Parameter  Gc1(s) Gc2(s) 

K  5.8725 5.3206 

α  50.4539 0.0100 

T1  1.0628 0.1100 

β  0.0100 49.8062 

T2  0.1599 1.1354 

 

Table 10: Desired interval and deviation ratio in 

Example 3 

Spec. Interval Gc1 DRGc1 Gc2 DRGc2 

TP 

[1.4850, 

1.5150] 
1.4875 0 1.5742 0.0391 

Tm 

[1.4850, 

1.5150] 
1.4875 0 1.5742 0.0391 

Tr 

[0.7920, 

0.8080] 
0.7285 0.0802 0.7920 0 

Td 

[0.4455, 

0.4545] 
0.4545 0 0.5236 0.1520 

%OS 
[0.0, 

0.03] 
0.0200 0 0.0200 0 

%US 
[0.0, 

0.02] 
0.0044 0 0.0109 0 

Ts 

[1.4850, 

1.5150] 
1.5123 0 1.5991 0.0555 

Ess 

[0.009, 

0.011] 
0.0090 0 0.0099 0 

 

 

Figure 9: Compensated step response in Example 

3 

8. Conclusions 

In industry, most of the systems can be 

represented by a linear time-invariant transfer 

function. This paper focused on the design of 

lead-lag-like controller. Lead-lag-like controller can 

be two-stage phase-lead, two-stage phase-lead, 

lag-lead or lag-lag controller. MPSO overcomes the 

drawback of PSO, and tries to force all the particles 

to search the optimum exhaustedly. The proposed 

objective function includes time-domain 

specifications, including the delay time, rise time, 

first peak time, maximum peak time, maximum 

overshoot, maximum undershoot, setting time and 

steady state error. Usually designers must make 

trade-offs in a variety of specifications. As long as the 

plant could be modeled as a linear time-invariant 

transfer function, the suggested method would design 

the lead-lag-like controller capable of approaching 

the desired specifications. Computer simulations 

justify the usefulness of the presented method. The 

result shows the proposed design method obtains 

better performance. The time-domain specifications 

can be fully met or very close to the desired. 
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