
International Journal of Computer, Consumer and Control (IJ3C), Vol. 4, No.3 (2015)

New Strategy of Efficient SPA-resistant Exponentiations

Wu-Chuan Yang

Abstract

In this paper, we propose a new strategy of SPA-

resistant exponentiation for RSA cryptosystems. In

the previous resistant strategy, the attackers can only

detect one computation type. Based on

asynchronous strategy, we modify the computation so

that the attacker still detect the square-only and the

square-and-multiply computations in evaluating

exponentiation. The goal of the modification is that

the probabilities of digits in these two computations

are the same; therefore the attackers do not get any

information.

Keywords: RSA cryptosystems, simple power

analysis (SPA), asynchronous strategy, folding

exponentiations

1. Introduction

Modular exponentiation is the famous computation

in cryptosystems [1-8]. Therefore, it is very

important to securely and efficiently compute

exponentiation. Unlike traditional cryptanalysis,

side channel attacks obtain information from the

physical implementation of a cryptosystem. The

most investigated side channel attacks include simple

power analysis (SPA), differential power analysis

(DPA), timing attack (TA), and fault attack (FA) [9, 10,

11]. It is difficult to resist all possible side channel

attacks, because these attacks have many approaches

[12, 13, 14]. In this paper, we focus on the SPA-

resistant exponentiations, and propose a new strategy

to do secure and efficient SPA-resistant exponentiation.

The famous algorithms for SPA-resistant

exponentiations include dummy computations [15],

Montgomery powering ladder [16], and side channel

atomicity [17]. Suppose S denotes the computation

cost of squaring, and M denotes the cost of

multiplication. Dummy computation is a

straightforward method in which we insert a dummy

computation in the classical square-and-multiply

algorithm to balance the power bias with the

computation cost increasing from nS+0.5nM to

nS+nM. The if-else decision is removed from the

Montgomery powering ladder algorithm to avoid the

fault attack in addition [18]. However, the

computation cost also requires nS+nM. The main

idea of side channel atomicity is to separate the

computation in all possible digits into several

equivalent parts to avoid SPA with a 1.5nM

computation cost.

In this paper, we proposed new strategy of SPA-

resistant exponentiations. The attacker can detect the

square-only and square-and-multiply computations; if

the probabilities of all possible digits are all equivalent

in all computations, no secret information is leaked.

This technology can be achieved by modifying

asynchronous strategy [20,21] and folding

exponentiations [22,23,24,25].

2. The Previous Strategy of SPA-

Resistant Exponentiations

The classical square-and-multiply algorithm is

shown in Algorithm 1. The 0 and 1 can be detected

by identifying the square-only (SO) computations and

the square-and-multiply (SM) computations. The

attacker gets di=0 for detecting SO and di=1 for

detecting SM as shown in Figure 1.

Figure 1: Possible SPA detection in Algorithm 1

For example, the attacker finds d=57(1110012)

as shown in Table 1. The digit probabilities of the

computations are in Table 2, where shows that

Algorithm 1 is vulnerable to SPA.

*Corresponding Author: Wu-Chuan Yang
(E-mail: wcyang@isu.edu.tw)
1Department of Information Engineering, I-Shou University,No.1, Sec.

1, Syuecheng Rd., Dashu District, Kaohsiung City 84001,Taiwan

35

International Journal of Computer, Consumer and Control (IJ3C), Vol. 4, No.3 (2015)

Algorithm 1 Classical square-and-multiply algorithm

I/P: 𝑥,𝑑=(𝑑𝑛,𝑑𝑛−1,⋯,𝑑0)2

O/P: 𝑧=𝑥𝑑

1. 𝑧=1;

2. for (𝑖 from 𝑛−1 to 0) {

3. 𝑧=𝑧2;

4. if (𝑑𝑖≠0) 𝑧=𝑧⋅𝑥;

5. }

Table 1: A SPA example in Algorithm 1

 initial 1 1 1 0 0 1

y 1
1 x2 x6

x14 x28
x56

x x3 x7 x57

detect SM SM SM SO SO SM

di 1 1 1 0 0 1

Table: 2 Probabilities of digits in Algorithm 1

Detection SO SM

0 100% 0

1 0 100%

A simple SPA-resistant exponentiation inserts a

dummy multiplication in the if-else decision. A good

dummy-multiplication version is shown in Algorithm

2 in which the if-else decision is eliminated [15, 16].

Because of only one computation (SM) in the for-loop,

the attacker does not get di by SPA. The computation

cost of Algorithm 2 is nS+nM. An example of

computing y = x57 (57=1110012) is illustrated in Table

3.

Algorithm 2 Dummy-multiplication exponentiation

I/P: 𝑥, 𝑑 = (𝑑𝑛, 𝑑𝑛−1, ⋯ , 𝑑0)2

O/P: 𝑧 = 𝑥𝑑

1. 𝑧0 = 1, 𝑧1 = 1;

2. for (𝑖 from 𝑛 − 1 to 0) {

3. 𝑧1 = 𝑧1
2;

4. 𝑧𝑑𝑖
= 𝑧𝑑𝑖

⋅ 𝑥;

5. }

6. 𝑧 = 𝑧1;

Table 3: different detections in Algorithm 2

 initial 1 1 1 0 0 1

z0 1 x x2

z1 1
1 x2 x6

x14 x28
x56

x x3 x7 x57

detect SM SM SM SM SM SM

In Algorithm 1, if we detect the computation is

SO, the relative bits are zeros; and if the detected

computation is SM, the relative bits are ones as shown

in Figure 2. In Algorithm 2, if di=0 we do a dummy

multiplication in line 4; therefore the detected

computations are all SM, and the relative bits are 50%

ones and 50% zeros as shown in Figure 3. Although

Algorithm 2 is SPA-resistant, its performance is

reduced.

Square

Only

Square &

Multiply

0

1

100%

100%

Figure 2: Computation and its relative bits in

Algorithm 1

Square &

Multiply

0

1
1/2

1/2

Figure 3: Computation and its relative bits in

Algorithm 2

Many SPA-resistant algorithms of

exponentiation, include the above dummy

computation, and the Montgomery powering ladder

[16] and the side channel atomicity [17] are integrating

all possible computations into one with equal

computation cost. Many efficient algorithms to

evaluate exponentiation cannot be used. In the next

section, we propose a totally new SPA-resistant

strategy: many computations (in this paper, it is two)

can be detected, so the probabilities of the digits in all

possible computations are all the same to provide the

SPA-resistant effect.

3. The Proposed Strategy

The proposed strategy is based on asynchronous

strategy and folding exponentiation. The folding

exponentiation uses the concept of multi-

exponentiation [26], so we can fold the exponent by

half, which then evaluates the result as shown in

Algorithm 3. Note that all possible values of 𝑢𝑎𝑖 𝑣𝑏𝑖,

including 𝑢, 𝑣, and 𝑢𝑣, should be precomputed and

stored. The probability of (𝑎𝑖 , 𝑏𝑖) ≠ (0,0) is about

0.75; thus the average computation is (0.5𝑛 +

0.5𝑛)𝑺 +
0.75𝑛

2
𝑴 = 𝑛𝑺 + 0.375𝑛𝑴. Table 4 shows

an example of Algorithm 3. In the example, we must

precompute and store 𝑥8 and 𝑥9 ; 57=(111001)2 can

be separated to 3 pairs (1,0), (1,0), (1,1).

36

International Journal of Computer, Consumer and Control (IJ3C), Vol. 4, No.3 (2015)

Algorithm 3 --- Basic folding exponentiation

I/P: 𝑥, 𝑑 = (𝑑𝑛 , 𝑑𝑛−1, ⋯ , 𝑑0)2

O/P: 𝑧 = 𝑥𝑑

1. 𝑧 = 1;

2. 𝑦 = 𝑥
𝑛

2;

3. Set {

𝑎 = (𝑑𝑛

2
−1, 𝑑𝑛

2
−2, ⋯ , 𝑑1, 𝑑0)

2

𝑏 = (𝑑𝑛−1, 𝑑𝑛−2, ⋯ , 𝑑𝑛

2
+1, 𝑑𝑛

2
)

2

4. for (𝑖 from
𝑛

2
− 1 to 0) {

5. 𝑧 = 𝑧2;

6. if (𝑎𝑖 , 𝑏𝑖) ≠ (0,0) { 𝑧 = 𝑧 ⋅
(𝑥𝑎𝑖𝑦𝑏𝑖);}

7. }

Table 4: An example of Algorithm 3

 Precomputation (1,0) (1,0) (1,1)

x

x2 x4
x8 x9

(=u) (=v) (=uv)

y
1 x16 x48

x8 x24 x57

detect S S S M SM SM SM

In Algorithm 3, if we detect the computation is

SO, the relative bits are zero-pairs, 00; and if the

detected computation is SM, the relative bits are

nonzero-pairs, 01, 11, and 10, as shown in Figure 4. It

is advantage to resist SPA. However the attacker can

get some information of the secret exponent d by

detecting the computation.

Square

Only

Square &

Multiply

00

11

1/4

1/4

01

10

1/4

1/4

Figure 4: Computation and its relative bits in

Algorithm 3

In 2007, Yang, Guan, and Laih proposed an

efficient strategy for multi-computations, e.g. multi-

exponentiation and multi-scalar multiplication.

They also proposed a series of algorithms, which

improve the performance of multi-computation [20].

The concept of an asynchronous strategy is to compute

partial results by choosing nearby digits which are

both zeros and both non-zeros. This can be described

by shifting digits in a and b. For example, let 𝑎 =
010101011 and 𝑏 = 101010101 , the joint

Hamming distance (the number of nonzero columns)

𝜔(𝑎, 𝑏)=9.

 {
 𝑎 = 0 1 0 1 0 1 0 1 1
 𝑏 = 1 0 1 0 1 0 1 0 1

→ 𝜔(𝑎, 𝑏) = 9

We can match more zeros by left-shifting 𝑎 one-

bit to reduce the join Hamming weight to 5 as follows.

{
 𝑎 = 0 1 0 1 0 1 0 1 1
 𝑏 = 1 0 1 0 1 0 1 01

→ 𝜔(𝑎, 𝑏) = 5

In the above observation, the computational cost

can be reduced by shifting 𝑎 one-bit to the left. In

order to get the correct computation, we must modify

the corresponding computations to obtain correct

result: the first is the rules to determine the position of

the blocks to be shifted, and the second is the relative

computations for shifted blocks.

We denote the computation with the same

weight digit-pair (a𝑖, b𝑖) , the normal state S𝑜 , the

computation with different weight digit-pair

(a𝑖 , b𝑗) with 𝑖 ≠ 𝑗 , the shift state S𝑥 . A simple

computing sequence of the asynchronous strategy is

shown in Figure 5.

So

Sx

Shift ai
Reverse

Shift ai

x
aiy

bi

x
aiy

2bi+1

Figure 5: A simple example of the asynchronous

strategy

For example, the computing sequence of the

following pair (𝑎, 𝑏)

{
 𝑎 = 0 1 0 1 0 1 0 1 1 (171)
 𝑏 = 1 0 1 0 1 0 1 01 (341)

.

The computing sequence of 𝑥𝑎𝑦𝑏 is

1 → 𝑥𝑦2 → 𝑥2𝑦4 → 𝑥5𝑦10 → 𝑥10𝑦20 → 𝑥21𝑦42

 → 𝑥42𝑦84 → 𝑥85𝑦170 → 𝑥171𝑦341

In order to improve performance, the rule of

state transformation should be simple, and the

computation can reduce the number of multiplication

as possible. Therefore, a good corresponding

computation of the state transform should be modified

as shown in Table 5.

37

International Journal of Computer, Consumer and Control (IJ3C), Vol. 4, No.3 (2015)

Table 5: Corresponding computation of Algorithm 4

State Computation Condition

𝑺𝒐 → 𝑺𝒐 𝑧 = 𝑧2 ⋅ (𝑥𝑎𝑖𝑦𝑏𝑖) 𝑎𝑖 = 𝑏𝑖

𝑺𝒐 → 𝑺𝒙 𝑧 = 𝑧2 ⋅ (𝑥𝑎𝑖) 𝑎𝑖 ≠ 𝑏𝑖

𝑺𝒙 → 𝑺𝒙 𝑧 = 𝑧2 ⋅ (𝑥𝑎𝑖𝑦2𝑏𝑖+1) ~(𝑎𝑖 = 𝑏𝑖 ≠ 𝑏𝑖+1)

𝑺𝒙 → 𝑺𝒐 𝑧 = (𝑧 ⋅ 𝑦𝑏𝑖+1)2 ⋅ (𝑥𝑎𝑖𝑦𝑏𝑖) 𝑎𝑖 = 𝑏𝑖 ≠ 𝑏𝑖+1

Note that we must pre-process the relative

exponent bit, 𝑎𝑖 , when the exponent 𝑎 is shifted.

The relative exponent bits, 𝑎𝑖 , 𝑏𝑖 , 𝑏𝑖+1 must be

processed when the reverse-shift is done. As

illustrated above, the basic algorithm of asynchronous

strategy is illustrated in Algorithm 4. For simplicity

the instruction 𝑧 = 𝑧2 ⋅ 𝑡𝑒𝑖 (note that 𝑒𝑖 is 0 or 1)

means

if (𝑒𝑖 ≠ 0) { z = z2 ⋅ 𝑡; }

else { 𝑧 = 𝑧2; }

Algorithm 4 Basic algorithm of the asynchronous

strategy

I/P:𝑥, 𝑦, 𝑎 = (𝑎𝑛, 𝑎𝑛−1, ⋯ , 𝑎0)2, 𝑎 = (𝑏𝑛 , 𝑏𝑛−1, ⋯ , 𝑏0)2

O/P: 𝑧 = 𝑥𝑎𝑦𝑏

1. 𝑦 = 1, 𝑠 = 𝑆𝑜;

2. 𝑢 = 𝑥𝑦, 𝑣 = 𝑥𝑦2;

3. for (𝑖 from 𝑛 − 1 to 0) {

4. if (𝑠 = 𝑆𝑜) {

5. if (𝑎𝑖 = 𝑏𝑖)

 { 𝑧 = 𝑧2 ⋅ 𝑢𝑎𝑖; }

6. else

 { 𝑠 = 𝑆𝑥 , 𝑧 = 𝑧2 ⋅ 𝑥𝑎𝑖; }

7. }

8. else {

9. if (𝑎𝑖 = 𝑏𝑖 𝐚𝐧𝐝 𝑏𝑖 ≠ 𝑏𝑖+1)

{ 𝑠 = 𝑆𝑜, 𝑧 = (𝑧 ⋅ 𝑦𝑏𝑖+1)2 ⋅
𝑢𝑎𝑖; }

10. else

 { 𝑧 = 𝑧2 ⋅ 𝑣𝑎𝑖; }

11. }

12. }

13. if (𝑠 = 𝑆𝑥) { 𝑧 = 𝑧 ⋅ 𝑦𝑏0; }

Detail of the asynchronous strategy is described

in [20, 21]. Due to the property of asynchronous

weight digits in computing sequence, the

asynchronous strategy has also advantage to resist SPA.

In evaluating single exponentiation, we can combine

the strategy and fold exponentiation, so we can do

exponentiation by Algorithm 5.

Algorithm 5 The proposed strategy

I/P: 𝑥 = (𝑥𝑛 , 𝑥𝑛−1, ⋯ , 𝑥0)2, 𝑑 = (𝑑𝑛, 𝑑𝑛−1, ⋯ , 𝑑0)2

O/P: 𝑧 = 𝑥𝑑

1. 𝑧 = 1, 𝑠 = 𝑆𝑜;

2. 𝑦 = 𝑥
𝑛

2 , 𝑢 = 𝑥
𝑛

2
+1, 𝑣 = 𝑥𝑛+1;

3. {

𝑎 = (𝑎𝑛

2
−1, 𝑎𝑛

2
−2, ⋯ , 𝑎0) = (𝑑𝑛

2
−1, 𝑑𝑛

2
−2, ⋯ , 𝑑0)

2

𝑏 = (𝑏𝑛

2
−1, 𝑏𝑛

2
−2, ⋯ , 𝑏0) = (𝑑𝑛−1, 𝑑𝑛−2, ⋯ , 𝑑𝑛

2
)

2

4. for (𝑖 from
𝑛

2
− 1 to 0) {

5. if (𝑠 = 𝑆𝑜) {

6. if (𝑎𝑖 = 𝑏𝑖) { 𝑧 = 𝑧2 ⋅ 𝑢𝑎𝑖 };

7. else

 { 𝑠 = 𝑆𝑥 , 𝑧 = 𝑧2 ⋅ 𝑥𝑎𝑖};

8. }

9. else {

10. if (𝑎𝑖 = 𝑏𝑖 𝐚𝐧𝐝 𝑏𝑖 ≠ 𝑏𝑖+1)

{ 𝑠 = 𝑆𝑜 , 𝑧 = (𝑧 ⋅ 𝑦𝑏𝑖+1)2 ⋅ 𝑢𝑎𝑖; }

11. else

 { 𝑧 = 𝑧2 ⋅ 𝑧𝑎𝑖; }

12. }

13. }

14. if (𝑠 = 𝑆𝑥) { 𝑧 = 𝑧 ⋅ 𝑦𝑏0; }

The corresponding computation of Algorithm 5

is similar to Algorithm 4 as shown in Table 6.

Table 6: Corresponding computation of Algorithm 5

State Computation Condition

𝑺𝒐 → 𝑺𝒐 𝑧 = 𝑧2 ⋅ 𝑥
(

𝑛

2
+1)𝑑𝑖

𝑑𝑖 = 𝑑𝑛

2
+𝑖

𝑺𝒐 → 𝑺𝒙 𝑧 = 𝑧2 ⋅ 𝑥𝑎𝑖 𝑑𝑖 ≠ 𝑑𝑛

2
+𝑖

𝑺𝒙 → 𝑺𝒙 𝑧 = 𝑧2 ⋅ 𝑥(𝑛+1)𝑑𝑖 ~(𝑑𝑖 = 𝑑𝑛

2
+𝑖 ≠ 𝑑𝑛

2
+𝑖+1)

𝑺𝒙 → 𝑺𝒐 𝑧 = (𝑧 ⋅ 𝑥
𝑛

2
𝑏𝑖+1)

2

⋅ 𝑥
(

𝑛

2
+1)𝑑𝑖 𝑑𝑖 = 𝑑𝑛

2
+𝑖 ≠ 𝑑𝑛

2
+𝑖+1

4. Performance and Security

Analysis

In Algorithm 3, the main computations are in

line 5, 6. If the attacker detects the computation is

SO, he can get (𝑎𝑖 , 𝑏𝑖) = (0,0), that is (𝑑𝑖 , 𝑑
𝑖+

𝑛

2
) =

(0,0). If the attacker detects the computation is SM,

(𝑎𝑖 , 𝑏𝑖) ≠ (0,0) is known, that is (𝑑𝑖 , 𝑑𝑖+
𝑛

2
) =

(0,1) 𝑜𝑟 (1,0) or (1,1) . The attacker can get the

information : 𝑃𝑑𝑖=0 =
1

3
, 𝑃𝑑𝑖=1 =

2

3
, 𝑃𝑑

𝑖+
𝑛
2

=0 =
1

3
, and

𝑃𝑑
𝑖+

𝑛
2

=1 =
2

3
, but he cannot make sure of the value of

𝑑𝑖 and 𝑑𝑖+
𝑛

2
. However, Algorithm 3 is weak to SPA,

so about
1

4
𝑛 bits will be detected, and some extra

information will be leaked.

38

International Journal of Computer, Consumer and Control (IJ3C), Vol. 4, No.3 (2015)

The analysis of Algorithm 5 is more complex;

the main computations are in line 6, 7, 10, and 11 as

shown in Table 7. We must find the probability of

each state and computation in Table 7. In

performance analysis, Lemma 1 shows the probability

of each state.

Table 7: Analysis of Algorithm 5

P.S. N.S. bi+1aibi computation Probability

So

So
x 0 0 SO

1 1 1
3 4 12
 

x 1 1 SM

Sx
x 0 1 SO

x 1 0 SM

Sx

So
0 1 1 SM

2 1 1
3 8 12
 

1 0 0 SM

Sx

0 0 0 SO

0 0 1 SO

0 1 0 SM

1 0 1 SM

1 1 0 SM

1 1 1 SM

Lemma 1: In Algorithm 4, 𝑃𝑠=𝑆𝑜
=

1

3
 and 𝑃𝑠=𝑆𝑥

=
2

3
.

Proof: Suppose 𝑃𝑠=𝑆𝑜
= 𝑝, and 𝑃𝑠=𝑆𝑥

= 1 − 𝑝.

We know 𝑃𝑥𝑖=0 = 𝑃𝑥𝑖=1 =
1

2
.

The following case will cause the next state to

So:

(1) PS=So, and (𝑥𝑖 , 𝑦𝑖) = (00) or (11).

(2) PS=Sx, and (𝑦𝑖+1𝑥𝑖𝑦𝑖) =
(100) 𝑜𝑟 (011).

Thus 𝑝 =
1+1

4
𝑝 +

1+1

8
(1 − 𝑝) → 𝑝 =

1

3
.

That is 𝑃𝑆𝑜
=

1

3
 and 𝑃𝑆𝑥

=
2

3
.

Lemma 1 is useful to analyze the security and

performance of Algorithm 5. Because of uniform

distribution of the bits, we can derive the average

number of multiplications, 0.333n in Theorem 1.

Theorem 1: The average number of multiplications in

Algorithm 6 is
1

3
𝑛 ≈ 0.333𝑛.

Proof: According to Lemma 1, we can get the average

number of multiplication by

∑ 𝑃𝑠=𝑆𝑡𝑎𝑡𝑒 × 𝑃𝑥𝑖𝑦𝑖

Computation=SM

 =
𝑛

2
(

1

3
⋅

1

4
⋅ (1 + 1) +

2

3
⋅

1

8
⋅ (1 + 1 + 1 + 1 + 2)) =

1

3
𝑛 ≈ 0.333𝑛

In security analysis, Theorem 2 shows when SO

or SM is detected, the probabilities of (𝑎𝑖 , 𝑏𝑖) = (0,0)

or (𝑎𝑖 , 𝑏𝑖) ≠ (0,0) are all
1

2
. That is the attacker

cannot find any information of (𝑎𝑖 , 𝑏𝑖). This is the

ideal result that the performance of Algorithm 5 is

better than Algorithm 3; and each probabilities of all

pair are all equal in each computation.

Theorem 2: In Algorithm 4, the digit probabilities of

the detection is

𝑃(𝑎𝑖,𝑏𝑖)=(0,0)|detection=SO =
1

2
, 𝑃(𝑎𝑖,𝑏𝑖)≠(0,0)|detection=SO =

1

2
,

𝑃(𝑎𝑖,𝑏𝑖)=(0,0)|detection=SM =
1

8
, 𝑃(𝑎𝑖,𝑏𝑖)≠(0,0)|detection=SM =

7

8
.

Proof: According to Table 7, we can easily get the

result.

If the detected computation of Algorithm 5 is SO,

the relative bits is 00 and 01, that is we can derive

𝑑𝑛

2
+𝑖 is 0. If the detected computation of Algorithm

5 is SM, the relative bits is 00, 01, 11 and 10, that is

we cannot derive the content of the relative bits.

Square

Only

Square &

Multiply

01

11

1/6

1/4

01

10

1/4

1/12

00
1/6

00

1/12

Figure 6: Computation and its relative bits in

Algorithm 5

Because original asynchronous strategy focuses

on performance improvement, the bit probability of

SM detected is not equivalent, that is some

information will be leaked by directly using Algorithm

5. In order to get secure computation by equivalent

bit probability of each detected computation, we must

modify the rules of the state decision and the modified

computation sequence in asynchronous strategy.

1 1 1
3 4 12
 

1 1 1
3 4 12
 

1 1 1
3 4 12
 

2 1 1
3 8 12
 

2 1 1
3 8 12
 

2 1 1
3 8 12
 

2 1 1
3 8 12
 

2 1 1
3 8 12
 

2 1 1
3 8 12
 

2 1 1
3 8 12
 

39

International Journal of Computer, Consumer and Control (IJ3C), Vol. 4, No.3 (2015)

5. Conclusions

In this paper, we mainly proposed the concept of

balancing digit probability. Even the different

computations are detected; if the probabilities of the

bits in the detected computations are equivalent, no

information is leaked. However we do not propose

an ideal algorithm for the proposed strategy. Based

on folding exponentiation and asynchronous strategy,

the computation cost is 𝑛𝑺 + 0.333𝑛𝑴 and the bit

detected rate is 12.5% in the proposed algorithm

(Algorithm 5). In comparison with the classical

square-and-multiply exponentiation (Algorithm 1), the

cost is 𝑛𝑺 +
1

2
𝑛𝑴 and the bit detected is 100%; for

the dummy-multiplication exponentiation algorithm

(Algorithm 2), the cost is 𝑛𝑺 + 𝑛𝑴 and the bit

detected is 0%; and directly using folding

exponentiation (Algorithm 3), the cost is 𝑛𝑺 +
3

8
𝑛𝑴

and the bit detected is 25%. All the computation cost

and bit detected rate are shown in Table 8. Algorithm

4 is used to evaluate multi-exponentiation, so it does

not be considered in Table 8.

Table 8: Comparison of single exponentiation

algorithms

Algorithm Computation Cost (𝒙𝒅) Bit detected rate

Algorithm 1 𝑛𝑺 + 0.500𝑛𝑴 100%

Algorithm 2 𝑛𝑺 + 1.000𝑛𝑴 0%

Algorithm 3 𝑛𝑺 + 0.375𝑛𝑴 25%

Algorithm 5 𝑛𝑺 + 0.333𝑛𝑴 12.5%

In order to get better performance and security

simultaneously, we use the strategy that compute the

asynchronous weight of exponent in this paper.

Based on the strategy, we proposed an efficient

algorithm, whose average computation cost is 𝑛𝑺 +
0.333𝑛𝑴 , and 12.5% of bits will be detected in the

simple power analysis. In addition, some extra

information will be leaked in detected computation

square-and-multiply. That is the proposed algorithm

is only a compromise prototype, so it can be improved

by adjusting the transformation rule and computing

sequence in asynchronous strategy. Based on the

strategy, more secure and efficient SPA-resistant

algorithms can be implemented in future.

References

[1]. R. Rivest, A. Shamir, and L. Adleman, "A

method for obtaining digital signatures and pub-

lic-key cryptosystems," Communication of

ACM, vol. 21, pp. 120 126, 1978.

[2]. T. ElGamal, "A public key cryptosystem and a

signature scheme based on discrete loga-

rithms," IEEE Transactions on Information

Theory, vol. 31, no. 4, pp. 469-472, Jul. 1985.

[3]. FIPS186-2, "Digital signature standard (DSS),"

http://csrc.nist.gov/ publications/fips/, 2001.

[4]. D. E. Knuth, The Art of Computer Programming,

vol 2. Seminumerical algorithms, Addi-son-

Wesley, 1969, 2nd edition 1982, 3rd edition

1998.

[5]. A. J. Menezes, P. C. van Oorschot, and S. A.

Vanstone, Handbook of Applied Cryptography,

CRC Press, 1997.

[6]. Ç . K. Koç, "High-speed RSA implementations,"

RSA Laboratories, Technique Notes TR201,

Available from URL:

http://www.rsasecurity.com/ rsalabs/, pp. 9-32,

Nov. 1994.

[7]. D. M. Gordon, "A survey of fast exponentiation

methods," Journal of Algorithms, vol. 27, pp.

129-146, 1998.

[8]. B. Möller, "Algorithms for multi-

exponentiations," 8th Annual Workshop on

Selected Areas in Cryptography -SAC 2001,

LNCS 2259, Springer-Verlag, pp. 165-180,

2001.

[9]. P. C. Kocher, "Timing attacks on

implementations of Diffie-Hellman, RSA, DSS,

and other systems," Advances in Cryptology -

CRYPTO'96, LNCS 1109, Springer- Verlag, pp.

104-113. 1996.

[10]. D. Boneh, R. A. DeMillo, and R.J. Lipton, "On

the Importance of Checking Cryptographic

Protocols for Faults," Advances in Cryptology -

EUROCRYPT '97, LNCS 1233, Springer-

Verlag, pp. 37-51, 1997.

[11]. P. C. Kocher, J. Jaffe, and B. Jun, "Differential

Power Analysis," Advances in Cryptology -

CRYPTO '99, LNCS 1666, Springer- Verlag, pp.

388-397, 1999.

[12]. S. M. Yen and M. Joye, "Checking Before

Output May Not be Enough against Fault-Based

Cryptanalysis," IEEE Trans. on Computers, vol.

49, no. 9, pp.967-970, Sept. 2000.

[13]. S. M. Yen, S. J. Kim, S. G. Lim and S. J. Moon,

"A countermeasure against one physical

cryptanalysis may benefit another attack,"

Information Security and Cryptology - ICISC

'01, LNCS 2288, Springer-Verlag, pp. 414-427,

2002.

[14]. C. Giraud, "An RSA Implementation Resistant

to Fault Attacks and to Simple Power Analysis,"

IEEE Trans. Computers, vol. 55, no. 9, pp. 1116-

1120, Sep. 2006.

[15]. J. Coron, "Resistance against differential power

analysis for elliptic curve cryptosystems,"

Cryptographic Hardware and Embedded

Systems - CHES'99, LNCS 1717, Springer-

Verlag, pp. 292-302, 1999.

40

International Journal of Computer, Consumer and Control (IJ3C), Vol. 4, No.3 (2015)

[16]. M. Joye and S. M. Yen, "The Montgomery

Powering Ladder," Cryptographic Hardware

and Embedded Systems - CHES'2002, LNCS

2523, Springer-Verlag, pp. 291-302, 2003.

[17]. B. Chevallier-Mames, Mathieu Ciet, and Marc

Joye, "Low-Cost Solutions for Preventing

Simple Side-Channel Analysis：Side-Channel

Atomicity," IEEE Trans. on Computers, vol. 53,

no. 6, pp. 760-768, June 2004.

[18]. S. M. Yen, S. J. Kim, S. G. Lim and S. J. Moon,

"RSA Speedup with Chinese Remainder

Theorem Immune against Hardwarw Fault

Cryptanalysis," IEEE Trans. on Computers, vol.

52, no. 4, pp. 461-472, Apr. 2003.

[19]. W. C. Yang, P. Y. Hsieh, and C. S. Laih,

"Efficient Squaring of Large Integers," IEICE

Transactions on Fundamentals, vol. E87-A, no.

5, pp. 1189-1192, May. 2004.

[20]. W. C. Yang, D. J. Guan, and C. S. Laih, "Fast

Multi-Computations with Asynchronous

Strategy," IEEE Trans. on Computers, vol. 56,

no. 2, pp. 234-242, Feb. 2007.

[21]. W. C. Yang, "The Study of Multi-computation

in Public Key Cryptography," Ph. D. disser-

tation of National Cheng Kung University, Jan.

2005.

[22]. D. C. Lou and C. C. Chang, "Fast exponentiation

method obtained by folding the exponent in

half," Electronics Letters, vol. 32, Issue 11, pp.

984-985, May 1996.

[23]. E. F. Brickelland, D. M. Gordon, K. S.

McCurley, and D. Wilson, "Fast exponentiation

with precomputation," Advances in Cryptology-

Eurocrypt'92, LNCS 658, Springer-Verlag, pp.

200-207, 1992.

[24]. C. H. Lim and P. J. Lee, "More flexible

exponentiation with precomputation," Advances

in Cryptology-Crypto'94, LNCS 839, Springer-

Verlag, pp. 95-107, 1994.

[25]. W. C. Yang, "New Strategy of Efficient SPA-

resistant Exponentiations," The Fifth

International Conference on Information

Assurance and Security (IAS 2009), pp.348-351,

2009.08.

[26]. S. M. Yen, C. S. Laih, and A. K. Lenstra, "Multi-

exponentiation," IEE Proceedings, Computers

and Digital Techniques, vol. 141, no. 6, pp. 325-

326, 1994.

 W u-Chuan Yang received his

BS, MS, and Ph.D. degree all in

Electrical Engineering from

National Cheng Kung

University, Tainan, Taiwan, in

1988, 1991, and 2006,

respectively. From 1991 to

2005, he was with the

Department of Electronic Engineering at Nan-Jeon

Junior College of Technique and Commerce. In

2003, he obtained 2003 Annual Best Paper Award

of JISE(Journal of Information Science and

Engineering). From 2005 to 2007, he was with the

Department of Technology Management at Aletheia

University. Since 2007, he is an associate

professor in the Department of Information

Engineering at I-Shou University, located in

Kaohsiung, Taiwan. His research interests include

cryptography, algorithm, information security and

software engineering.

41

