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Abstract 

In this paper, we propose a new strategy of SPA-

resistant exponentiation for RSA cryptosystems.  In 

the previous resistant strategy, the attackers can only 

detect one computation type.  Based on 

asynchronous strategy, we modify the computation so 

that the attacker still detect the square-only and the 

square-and-multiply computations in evaluating 

exponentiation.  The goal of the modification is that 

the probabilities of digits in these two computations 

are the same; therefore the attackers do not get any 

information.  
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1. Introduction 

Modular exponentiation is the famous computation 

in cryptosystems [1-8].  Therefore, it is very 

important to securely and efficiently compute 

exponentiation.  Unlike traditional cryptanalysis, 

side channel attacks obtain information from the 

physical implementation of a cryptosystem.  The 

most investigated side channel attacks include simple 

power analysis (SPA), differential power analysis 

(DPA), timing attack (TA), and fault attack (FA) [9, 10, 

11].  It is difficult to resist all possible side channel 

attacks, because these attacks have many approaches 

[12, 13, 14].  In this paper, we focus on the SPA-

resistant exponentiations, and propose a new strategy 

to do secure and efficient SPA-resistant exponentiation. 

 

The famous algorithms for SPA-resistant 

exponentiations include dummy computations [15], 

Montgomery powering ladder [16], and side channel 

atomicity [17].  Suppose S denotes the computation 

cost of squaring, and M denotes the cost of 

multiplication. Dummy computation is a 

straightforward method in which we insert a dummy 

computation in the classical square-and-multiply  

 

 

 

 

 

 

 

algorithm to balance the power bias with the 

computation cost increasing from nS+0.5nM to 

nS+nM.  The if-else decision is removed from the 

Montgomery powering ladder algorithm to avoid the 

fault attack in addition [18].  However, the 

computation cost also requires nS+nM.  The main 

idea of side channel atomicity is to separate the 

computation in all possible digits into several 

equivalent parts to avoid SPA with a 1.5nM 

computation cost. 

 

In this paper, we proposed new strategy of SPA-

resistant exponentiations.  The attacker can detect the 

square-only and square-and-multiply computations; if 

the probabilities of all possible digits are all equivalent 

in all computations, no secret information is leaked.  

This technology can be achieved by modifying 

asynchronous strategy [20,21] and folding 

exponentiations [22,23,24,25]. 

2. The Previous Strategy of SPA-

Resistant Exponentiations 

The classical square-and-multiply algorithm is 

shown in Algorithm 1.  The 0 and 1 can be detected 

by identifying the square-only (SO) computations and 

the square-and-multiply (SM) computations. The 

attacker gets di=0 for detecting SO and di=1 for 

detecting SM as shown in Figure 1. 

 

 

 

 

 

 

 

Figure 1: Possible SPA detection in Algorithm 1 

 

For example, the attacker finds d=57(1110012) 

as shown in Table 1.  The digit probabilities of the 

computations are in Table 2, where shows that 

Algorithm 1 is vulnerable to SPA. 
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Algorithm 1 Classical square-and-multiply algorithm 

 

I/P: 𝑥,𝑑=(𝑑𝑛,𝑑𝑛−1,⋯,𝑑0)2  

O/P: 𝑧=𝑥𝑑  

1. 𝑧=1;  

2. for (𝑖 from 𝑛−1 to 0) {  

3. 𝑧=𝑧2;  

4. if (𝑑𝑖≠0) 𝑧=𝑧⋅𝑥;  

5. }  

Table 1: A SPA example in Algorithm 1 

  initial 1 1 1 0 0 1 

y 1 
1 x2 x6 

x14 x28 
x56 

x x3 x7 x57 

detect   SM SM SM SO SO SM 

di   1 1 1 0 0 1 

 

 

Table: 2 Probabilities of digits in Algorithm 1 

 

Detection SO SM 

0 100% 0 

1 0 100% 

 

A simple SPA-resistant exponentiation inserts a 

dummy multiplication in the if-else decision. A good 

dummy-multiplication version is shown in Algorithm 

2 in which the if-else decision is eliminated [15, 16]. 

Because of only one computation (SM) in the for-loop, 

the attacker does not get di by SPA.  The computation 

cost of Algorithm 2 is nS+nM.  An example of 

computing y = x57 (57=1110012) is illustrated in Table 

3. 

 

Algorithm 2 Dummy-multiplication exponentiation 

 

I/P: 𝑥, 𝑑 = (𝑑𝑛, 𝑑𝑛−1, ⋯ , 𝑑0)2 

O/P: 𝑧 = 𝑥𝑑  

1. 𝑧0 = 1, 𝑧1 = 1; 

2. for (𝑖 from 𝑛 − 1 to 0) { 

3.   𝑧1 = 𝑧1
2; 

4.   𝑧𝑑𝑖
= 𝑧𝑑𝑖

⋅ 𝑥; 

5. } 

6. 𝑧 = 𝑧1; 

 

Table 3: different detections in Algorithm 2 

 

  initial 1 1 1 0 0 1 

z0 1       x x2   

z1 1 
1 x2 x6 

x14 x28 
x56 

x x3 x7 x57 

detect  SM SM SM SM SM SM 

 

 

In Algorithm 1, if we detect the computation is 

SO, the relative bits are zeros; and if the detected 

computation is SM, the relative bits are ones as shown 

in Figure 2. In Algorithm 2,  if di=0 we do a dummy 

multiplication in line 4;  therefore the detected 

computations are all SM, and the relative bits are 50% 

ones and 50% zeros as shown in Figure 3.  Although 

Algorithm 2 is SPA-resistant, its performance is 

reduced. 
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Figure 2: Computation and its relative bits in 

Algorithm 1 
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Figure 3: Computation and its relative bits in 

Algorithm 2 

 

Many SPA-resistant algorithms of 

exponentiation, include the above dummy 

computation, and the Montgomery powering ladder 

[16] and the side channel atomicity [17] are integrating 

all possible computations into one with equal 

computation cost.  Many efficient algorithms to 

evaluate exponentiation cannot be used.  In the next 

section, we propose a totally new SPA-resistant 

strategy: many computations (in this paper, it is two) 

can be detected, so the probabilities of the digits in all 

possible computations are all the same to provide the 

SPA-resistant effect. 

3. The Proposed Strategy 

The proposed strategy is based on asynchronous 

strategy and folding exponentiation.  The folding 

exponentiation uses the concept of multi-

exponentiation [26], so we can fold the exponent by 

half, which then evaluates the result as shown in 

Algorithm 3.  Note that all possible values of 𝑢𝑎𝑖  𝑣𝑏𝑖, 

including 𝑢, 𝑣, and 𝑢𝑣, should be precomputed and 

stored.  The probability of (𝑎𝑖 , 𝑏𝑖) ≠ (0,0) is about 

0.75; thus the average computation is (0.5𝑛 +

0.5𝑛)𝑺 +
0.75𝑛

2
𝑴 = 𝑛𝑺 + 0.375𝑛𝑴.  Table 4 shows 

an example of Algorithm 3.  In the example, we must 

precompute and store 𝑥8 and 𝑥9 ; 57=(111001)2 can 

be separated to 3 pairs (1,0), (1,0), (1,1). 
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Algorithm 3 --- Basic folding exponentiation 

 

I/P: 𝑥, 𝑑 = (𝑑𝑛 , 𝑑𝑛−1, ⋯ , 𝑑0)2 

O/P: 𝑧 = 𝑥𝑑  

1. 𝑧 = 1; 

2. 𝑦 = 𝑥
𝑛

2; 

3. Set {

𝑎 = (𝑑𝑛

2
−1, 𝑑𝑛

2
−2, ⋯ , 𝑑1, 𝑑0)

2
    

𝑏 = (𝑑𝑛−1, 𝑑𝑛−2, ⋯ , 𝑑𝑛

2
+1, 𝑑𝑛

2
)

2

 

4. for (𝑖 from 
𝑛

2
− 1 to 0) { 

5.   𝑧 = 𝑧2; 

6.   if (𝑎𝑖 , 𝑏𝑖) ≠ (0,0)   { 𝑧 = 𝑧 ⋅
(𝑥𝑎𝑖𝑦𝑏𝑖);} 

7. } 
 

Table 4:  An example of Algorithm 3  

  Precomputation (1,0) (1,0) (1,1) 

  
x 

x2 x4 
x8 x9 

      
(=u) (=v) (=uv) 

y           
1 x16 x48 

x8 x24 x57 

detect   S S S M SM SM SM 

 

In Algorithm 3, if we detect the computation is 

SO, the relative bits are zero-pairs, 00; and if the 

detected computation is SM, the relative bits are 

nonzero-pairs, 01, 11, and 10, as shown in Figure 4. It 

is advantage to resist SPA.  However the attacker can 

get some information of the secret exponent d by 

detecting the computation. 
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Figure 4: Computation and its relative bits in 

Algorithm 3 

 

In 2007, Yang, Guan, and Laih proposed an 

efficient strategy for multi-computations, e.g. multi-

exponentiation and multi-scalar multiplication.  

They also proposed a series of algorithms, which 

improve the performance of multi-computation [20].  

The concept of an asynchronous strategy is to compute 

partial results by choosing nearby digits which are 

both zeros and both non-zeros.  This can be described 

by shifting digits in a and b.  For example, let 𝑎 =
010101011  and 𝑏 = 101010101 , the joint 

Hamming distance (the number of nonzero columns) 

𝜔(𝑎, 𝑏)=9.  

        {
 𝑎 = 0 1 0 1 0 1 0 1 1
 𝑏 = 1 0 1 0 1 0 1 0 1

→ 𝜔(𝑎, 𝑏) = 9 

 

We can match more zeros by left-shifting 𝑎 one-

bit to reduce the join Hamming weight to 5 as follows. 

 

{
 𝑎 = 0 1 0 1 0 1 0 1    1
 𝑏 =     1 0 1 0 1 0 1 01

→ 𝜔(𝑎, 𝑏) = 5  

 

In the above observation, the computational cost 

can be reduced by shifting 𝑎 one-bit to the left.  In 

order to get the correct computation, we must modify 

the corresponding computations to obtain correct 

result: the first is the rules to determine the position of 

the blocks to be shifted, and the second is the relative 

computations for shifted blocks. 

 

We denote the computation with the same 

weight digit-pair (a𝑖, b𝑖) , the normal state S𝑜 , the 

computation with different weight digit-pair 

(a𝑖 , b𝑗) with  𝑖 ≠ 𝑗 , the shift state S𝑥 .  A simple 

computing sequence of the asynchronous strategy is 

shown in Figure 5. 
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Figure 5: A simple example of the asynchronous 

strategy 

 

For example, the computing sequence of the 

following pair (𝑎, 𝑏) 

 

{
 𝑎 = 0 1 0 1 0 1 0 1    1 (171)
 𝑏 =     1 0 1 0 1 0 1 01 (341)

.  

 

The computing sequence of 𝑥𝑎𝑦𝑏  is  

 

1 → 𝑥𝑦2 → 𝑥2𝑦4 → 𝑥5𝑦10 → 𝑥10𝑦20 → 𝑥21𝑦42 

   → 𝑥42𝑦84 → 𝑥85𝑦170 → 𝑥171𝑦341 
 

In order to improve performance, the rule of 

state transformation should be simple, and the 

computation can reduce the number of multiplication 

as possible. Therefore, a good corresponding 

computation of the state transform should be modified 

as shown in Table 5.  
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Table 5: Corresponding computation of Algorithm 4  

 
State  Computation Condition 

𝑺𝒐 → 𝑺𝒐 𝑧 = 𝑧2 ⋅ (𝑥𝑎𝑖𝑦𝑏𝑖)  𝑎𝑖 = 𝑏𝑖  

𝑺𝒐 → 𝑺𝒙 𝑧 = 𝑧2 ⋅ (𝑥𝑎𝑖)  𝑎𝑖 ≠ 𝑏𝑖  

𝑺𝒙 → 𝑺𝒙 𝑧 = 𝑧2 ⋅ (𝑥𝑎𝑖𝑦2𝑏𝑖+1)  ~(𝑎𝑖 = 𝑏𝑖 ≠ 𝑏𝑖+1) 

𝑺𝒙 → 𝑺𝒐 𝑧 = (𝑧 ⋅ 𝑦𝑏𝑖+1)2 ⋅ (𝑥𝑎𝑖𝑦𝑏𝑖)  𝑎𝑖 = 𝑏𝑖 ≠ 𝑏𝑖+1   

 

Note that we must pre-process the relative 

exponent bit, 𝑎𝑖 , when the exponent 𝑎  is shifted.  

The relative exponent bits, 𝑎𝑖 , 𝑏𝑖 , 𝑏𝑖+1  must be 

processed when the reverse-shift is done. As 

illustrated above, the basic algorithm of asynchronous 

strategy is illustrated in Algorithm 4.  For simplicity 

the instruction 𝑧 = 𝑧2 ⋅ 𝑡𝑒𝑖  (note that 𝑒𝑖  is 0 or 1) 

means  

 

if (𝑒𝑖 ≠ 0) { z = z2 ⋅ 𝑡; } 

else { 𝑧 = 𝑧2; } 

 

Algorithm 4 Basic algorithm of the asynchronous 

strategy  

 

I/P:𝑥, 𝑦, 𝑎 = (𝑎𝑛, 𝑎𝑛−1, ⋯ , 𝑎0)2, 𝑎 = (𝑏𝑛 , 𝑏𝑛−1, ⋯ , 𝑏0)2 

O/P: 𝑧 = 𝑥𝑎𝑦𝑏  

1. 𝑦 = 1, 𝑠 = 𝑆𝑜; 

2. 𝑢 = 𝑥𝑦, 𝑣 = 𝑥𝑦2; 

3. for (𝑖 from 𝑛 − 1 to 0) { 

4.   if (𝑠 = 𝑆𝑜) { 

5.     if (𝑎𝑖 = 𝑏𝑖)   

     {  𝑧 = 𝑧2 ⋅ 𝑢𝑎𝑖; }   

6.     else   

    { 𝑠 = 𝑆𝑥 , 𝑧 = 𝑧2 ⋅ 𝑥𝑎𝑖; } 

7.   } 

8.   else { 

9.     if (𝑎𝑖 = 𝑏𝑖  𝐚𝐧𝐝 𝑏𝑖 ≠ 𝑏𝑖+1)   

{ 𝑠 = 𝑆𝑜, 𝑧 = (𝑧 ⋅ 𝑦𝑏𝑖+1)2 ⋅
𝑢𝑎𝑖;  } 

10.     else  

   { 𝑧 = 𝑧2 ⋅ 𝑣𝑎𝑖; } 

11.   } 

12. } 

13. if (𝑠 = 𝑆𝑥)  { 𝑧 = 𝑧 ⋅ 𝑦𝑏0; } 

 

Detail of the asynchronous strategy is described 

in [20, 21]. Due to the property of asynchronous 

weight digits in computing sequence, the 

asynchronous strategy has also advantage to resist SPA.  

In evaluating single exponentiation, we can combine 

the strategy and fold exponentiation, so we can do 

exponentiation by Algorithm 5.  

 

 

 

 

 

 

 

 

 

Algorithm 5 The proposed strategy 

  

I/P: 𝑥 = (𝑥𝑛 , 𝑥𝑛−1, ⋯ , 𝑥0)2, 𝑑 = (𝑑𝑛, 𝑑𝑛−1, ⋯ , 𝑑0)2 

O/P: 𝑧 = 𝑥𝑑  

1. 𝑧 = 1, 𝑠 = 𝑆𝑜; 

2.  𝑦 = 𝑥
𝑛

2 , 𝑢 = 𝑥
𝑛

2
+1, 𝑣 = 𝑥𝑛+1; 

3. {

𝑎 = (𝑎𝑛

2
−1, 𝑎𝑛

2
−2, ⋯ , 𝑎0) = (𝑑𝑛

2
−1, 𝑑𝑛

2
−2, ⋯ , 𝑑0)

2

𝑏 = (𝑏𝑛

2
−1, 𝑏𝑛

2
−2, ⋯ , 𝑏0) = (𝑑𝑛−1, 𝑑𝑛−2, ⋯ , 𝑑𝑛

2
)

2

 

4. for (𝑖 from 
𝑛

2
− 1 to 0) { 

5.   if (𝑠 = 𝑆𝑜) { 

6.     if (𝑎𝑖 = 𝑏𝑖)  { 𝑧 = 𝑧2 ⋅ 𝑢𝑎𝑖  };   

7.     else   

      { 𝑠 = 𝑆𝑥 , 𝑧 = 𝑧2 ⋅ 𝑥𝑎𝑖}; 

8.   } 

9.   else { 

10.     if (𝑎𝑖 = 𝑏𝑖  𝐚𝐧𝐝 𝑏𝑖 ≠ 𝑏𝑖+1)   

{ 𝑠 = 𝑆𝑜 , 𝑧 = (𝑧 ⋅ 𝑦𝑏𝑖+1)2 ⋅ 𝑢𝑎𝑖;  } 

11.     else  

        { 𝑧 = 𝑧2 ⋅ 𝑧𝑎𝑖; } 

12.   } 

13. } 

14. if (𝑠 = 𝑆𝑥)  { 𝑧 = 𝑧 ⋅ 𝑦𝑏0; } 

 

The corresponding computation of Algorithm 5 

is similar to Algorithm 4 as shown in Table 6. 

 
Table 6: Corresponding computation of Algorithm 5  

 
State  Computation Condition 

𝑺𝒐 → 𝑺𝒐 𝑧 = 𝑧2 ⋅ 𝑥
(

𝑛

2
+1)𝑑𝑖  

𝑑𝑖 = 𝑑𝑛

2
+𝑖  

𝑺𝒐 → 𝑺𝒙 𝑧 = 𝑧2 ⋅ 𝑥𝑎𝑖   𝑑𝑖 ≠ 𝑑𝑛

2
+𝑖  

𝑺𝒙 → 𝑺𝒙 𝑧 = 𝑧2 ⋅ 𝑥(𝑛+1)𝑑𝑖  ~(𝑑𝑖 = 𝑑𝑛

2
+𝑖 ≠ 𝑑𝑛

2
+𝑖+1)  

𝑺𝒙 → 𝑺𝒐 𝑧 = (𝑧 ⋅ 𝑥
𝑛

2
𝑏𝑖+1)

2

⋅ 𝑥
(

𝑛

2
+1)𝑑𝑖  𝑑𝑖 = 𝑑𝑛

2
+𝑖 ≠ 𝑑𝑛

2
+𝑖+1   

4. Performance and Security 

Analysis 

In Algorithm 3, the main computations are in 

line 5, 6.  If the attacker detects the computation is 

SO, he can get (𝑎𝑖 , 𝑏𝑖) = (0,0), that is (𝑑𝑖 , 𝑑
𝑖+

𝑛

2
) =

(0,0).  If the attacker detects the computation is SM, 

(𝑎𝑖 , 𝑏𝑖) ≠ (0,0)  is known, that is (𝑑𝑖 , 𝑑𝑖+
𝑛

2
) =

(0,1) 𝑜𝑟 (1,0) or (1,1) . The attacker can get the 

information : 𝑃𝑑𝑖=0 =
1

3
, 𝑃𝑑𝑖=1 =

2

3
, 𝑃𝑑

𝑖+
𝑛
2

=0 =
1

3
, and 

𝑃𝑑
𝑖+

𝑛
2

=1 =
2

3
, but he cannot make sure of the value of 

𝑑𝑖 and 𝑑𝑖+
𝑛

2
.  However, Algorithm 3 is weak to SPA, 

so about 
1

4
𝑛  bits will be detected, and some extra 

information will be leaked. 
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The analysis of Algorithm 5 is more complex; 

the main computations are in line 6, 7, 10, and 11 as 

shown in Table 7.  We must find the probability of 

each state and computation in Table 7.  In 

performance analysis, Lemma 1 shows the probability 

of each state. 

 

Table 7: Analysis of Algorithm 5 

 

P.S. N.S. bi+1aibi computation Probability 

So 

So 
x 0 0 SO 

1 1 1
3 4 12
   

x 1 1 SM  

Sx 
x 0 1 SO  

x 1 0 SM  

Sx 

So 
0 1 1 SM 

2 1 1
3 8 12
   

1 0 0 SM  

Sx 

0 0 0 SO  

0 0 1 SO  

0 1 0 SM  

1 0 1 SM  

1 1 0 SM  

1 1 1 SM  

 

Lemma 1: In Algorithm 4, 𝑃𝑠=𝑆𝑜
=

1

3
 and 𝑃𝑠=𝑆𝑥

=
2

3
. 

Proof: Suppose 𝑃𝑠=𝑆𝑜
= 𝑝, and 𝑃𝑠=𝑆𝑥

= 1 − 𝑝. 

We know 𝑃𝑥𝑖=0 = 𝑃𝑥𝑖=1 =
1

2
.   

The following case will cause the next state to 

So:  

(1) PS=So, and (𝑥𝑖 , 𝑦𝑖) = (00) or (11).   

(2) PS=Sx, and (𝑦𝑖+1𝑥𝑖𝑦𝑖) =
(100) 𝑜𝑟 (011).   

Thus 𝑝 =
1+1

4
𝑝 +

1+1

8
(1 − 𝑝) → 𝑝 =

1

3
.   

That is 𝑃𝑆𝑜
=

1

3
  and 𝑃𝑆𝑥

=
2

3
. 

 

Lemma 1 is useful to analyze the security and 

performance of Algorithm 5. Because of uniform 

distribution of the bits, we can derive the average 

number of multiplications, 0.333n in Theorem 1. 

 

Theorem 1: The average number of multiplications in 

Algorithm 6 is 
1

3
𝑛 ≈ 0.333𝑛. 

 

Proof: According to Lemma 1, we can get the average 

number of multiplication by  

∑ 𝑃𝑠=𝑆𝑡𝑎𝑡𝑒 × 𝑃𝑥𝑖𝑦𝑖

Computation=SM

 

 =
𝑛

2
(

1

3
⋅

1

4
⋅ (1 + 1) +

2

3
⋅

1

8
⋅ (1 + 1 + 1 + 1 + 2)) =

1

3
𝑛 ≈ 0.333𝑛  

 

In security analysis, Theorem 2 shows when SO 

or SM is detected, the probabilities of (𝑎𝑖 , 𝑏𝑖) = (0,0) 

or (𝑎𝑖 , 𝑏𝑖) ≠ (0,0)  are all 
1

2
.  That is the attacker 

cannot find any information of (𝑎𝑖 , 𝑏𝑖). This is the 

ideal result that the performance of Algorithm 5 is 

better than Algorithm 3; and each probabilities of all 

pair are all equal in each computation.  

 

Theorem 2: In Algorithm 4, the digit probabilities of 

the detection is  

𝑃(𝑎𝑖,𝑏𝑖)=(0,0)|detection=SO =
1

2
, 𝑃(𝑎𝑖,𝑏𝑖)≠(0,0)|detection=SO =

1

2
, 

𝑃(𝑎𝑖,𝑏𝑖)=(0,0)|detection=SM =
1

8
,  𝑃(𝑎𝑖,𝑏𝑖)≠(0,0)|detection=SM =

7

8
. 

 

Proof: According to Table 7, we can easily get the 

result.   

 

If the detected computation of Algorithm 5 is SO, 

the relative bits is 00 and 01, that is we can derive 

𝑑𝑛

2
+𝑖 is 0.  If the detected computation of Algorithm 

5 is SM, the relative bits is 00, 01, 11 and 10, that is 

we cannot derive the content of the relative bits. 

 

Square

Only

Square &

Multiply

01

11

1/6

1/4

01

10

1/4

1/12

00
1/6

00
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Figure 6: Computation and its relative bits in 

Algorithm 5 

 

Because original asynchronous strategy focuses 

on performance improvement, the bit probability of 

SM detected is not equivalent, that is some 

information will be leaked by directly using Algorithm 

5.  In order to get secure computation by equivalent 

bit probability of each detected computation, we must 

modify the rules of the state decision and the modified 

computation sequence in asynchronous strategy. 

 

 

 

 

 

 

 

 

1 1 1
3 4 12
 

1 1 1
3 4 12
 

1 1 1
3 4 12
 

2 1 1
3 8 12
 

2 1 1
3 8 12
 

2 1 1
3 8 12
 

2 1 1
3 8 12
 

2 1 1
3 8 12
 

2 1 1
3 8 12
 

2 1 1
3 8 12
 
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5. Conclusions 

In this paper, we mainly proposed the concept of 

balancing digit probability.  Even the different 

computations are detected; if the probabilities of the 

bits in the detected computations are equivalent, no 

information is leaked.  However we do not propose 

an ideal algorithm for the proposed strategy.  Based 

on folding exponentiation and asynchronous strategy, 

the computation cost is 𝑛𝑺 + 0.333𝑛𝑴 and the bit 

detected rate is 12.5% in the proposed algorithm 

(Algorithm 5).  In comparison with the classical 

square-and-multiply exponentiation (Algorithm 1), the 

cost is 𝑛𝑺 +
1

2
𝑛𝑴 and the bit detected is 100%; for 

the dummy-multiplication exponentiation algorithm 

(Algorithm 2), the cost is 𝑛𝑺 + 𝑛𝑴  and the bit 

detected is 0%; and directly using folding 

exponentiation (Algorithm 3), the cost is 𝑛𝑺 +
3

8
𝑛𝑴 

and the bit detected is 25%.  All the computation cost 

and bit detected rate are shown in Table 8.  Algorithm 

4 is used to evaluate multi-exponentiation, so it does 

not be considered in Table 8. 

 

Table 8: Comparison of single exponentiation 

algorithms  

 
Algorithm Computation Cost (𝒙𝒅) Bit detected rate 

Algorithm 1 𝑛𝑺 + 0.500𝑛𝑴 100% 

Algorithm 2 𝑛𝑺 + 1.000𝑛𝑴 0% 

Algorithm 3 𝑛𝑺 + 0.375𝑛𝑴 25% 

Algorithm 5 𝑛𝑺 + 0.333𝑛𝑴 12.5% 

 

In order to get better performance and security 

simultaneously, we use the strategy that compute the 

asynchronous weight of exponent in this paper.  

Based on the strategy, we proposed an efficient 

algorithm, whose average computation cost is 𝑛𝑺 +
0.333𝑛𝑴  , and 12.5% of bits will be detected in the 

simple power analysis.  In addition, some extra 

information will be leaked in detected computation 

square-and-multiply.  That is the proposed algorithm 

is only a compromise prototype, so it can be improved 

by adjusting the transformation rule and computing 

sequence in asynchronous strategy.  Based on the 

strategy, more secure and efficient SPA-resistant 

algorithms can be implemented in future. 
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