
International Journal of Computer, Consumer and Control (IJ3C), Vol. 4, No.4 (2015)

A Framework Supporting Centralized Routing in Multi-Hop

TSCH Networks

Yun-Shuai Yu

Abstract

Multi-hop Time-Slotted Channel Hopping

(TSCH) networks seem to be the most promising

solution for collecting events or changes in an

industrial environment. However, its distributed

routing model prevents administrators or operators

from having full control of the wireless sensor

network. In this paper, a framework based on existing

TSCH implementation is proposed for the provision

of centralized routing functionality. Experiment

results prove its feasibility.

Keywords: TSCH, industrial environment, wireless

sensor network, centralized routing

1. Introduction

A wireless sensor network can significantly

improve the productivity and safety of industrial

plants by providing the events or changes in the

factory to the administrators or plant workers. Since

noises generated from machines often make the

wireless links unreliable for an uncertain amount of

time, some standards [1, 2, 3] are made available to

the general public for this issue. The OpenWSN

project [1] is an open-source implementation of a

fully standards-based protocol stack for wireless

sensor networks, rooted in the new IEEE 802.15.4e

[4] Time Slotted Channel Hopping standard.

IEEE802.15.4e, coupled with Internet of Things

standards, such as 6LoWPAN [5], RPL [6] and CoAP

[7], it enables ultra-low-power and highly reliable

mesh networks, which are fully integrated into the

Internet.

The Time-Slotted feature requires sensor nodes

to synchronize with a gateway. If a node can’t receive

the signal from the gateway, it must synchronize with

another node which has already synchronized. The

gateway periodically broadcasts an enhanced beacon

for synchronization. The time period between any

two consecutive beacons is divided into several slots,

named time slot. Each node sends/receives a frame

within a time slot. Thus, collisions can be

significantly avoided. Channel-Hopping feature

means each node periodically switches the channel

using a sequence known to both sending and

receiving devices where the entire frame is sent on a

single channel. This feature improves the

transmission reliability when a small set of channels

are blocked.

OpenWSN adopts a distributed routing

algorithm, named RPL, in which each node

determines its next-hop relay towards the gateway.

However, a node may not be able to locate a suitable

parent node within a reasonable time due to its

limited knowledge of the entire network. In addition,

an administrator may expect the full control of the

wireless network. Accordingly, this paper proposes a

framework to enable central control over OpenWSN.

We leverage the RPL to explore the network status.

Then two UDP applications are designed to collect

the network status and to distribute the commands for

centralized routing. Finally, the forwarding module of

OpenWSN is modified to execute the centralized

routing commands. Experimental results verify its

feasibility.

The remainder of this paper is organized as

follows. Section 2 reviews the background and

motivation. Section 3 describes the architecture of

OpenWSN, which is the basis of our framework.

Section 4 describes the proposed framework and

introduces the related modules. Section 5 describes

the experimental methodology and results. Finally,

Section 6 summarizes the major contributions of the

study and indicates the intended direction of future

research.

2. Background and Motivation

This section introduces the distributed routing

algorithm, RPL, and discusses its limitation.

A basic RPL topology is a DODAG,

Destination-Oriented Directed Acyclic Graph. A

DAG is a directed graph having the property that all

edges are oriented in such a way that no cycles exist.

A Destination-Oriented DAG means the DAG is

rooted at a single destination, i.e. at a gateway, which

may act as a border router between its DODAG and a

backbone network.

*Corresponding Author: Yun-Shuai Yu
(E-mail: yys@ncut.edu.tw)
1 Department of Electronic Engineering, National Chin-Yi University

of Technology, No.57, Sec. 2, Zhongshan Rd., Taiping Dist.,

Taichung 411, Taiwan (R.O.C.)

27

International Journal of Computer, Consumer and Control (IJ3C), Vol. 4, No.4 (2015)

RPL defines three types of control messages for

DODAG construction and maintenance:

1). DIO: The DODAG Information Object

carries information that allows a node to

discover a RPL Instance, learn its

configuration parameters, select a DODAG

parent set, and maintain the DODAG.

2). DAO: The Destination Advertisement

Object (DAO) is used to propagate

destination information upward along the

DODAG.

3). DIS: The DODAG Information Solicitation

(DIS) message may be used to solicit a

DODAG Information Object from a RPL

node.

Nodes advertise their presence, affiliation with

a DODAG, routing cost, and related metrics by

sending link-local multicast DIO messages to

all-RPL-nodes. One important field in the DIO is

Rank. The Rank of a node is a scalar representation

of the location of the node within a DODAG.

Roughly, and a node with a smaller rank value means

that it is closer to the gateway.

The details of Rank calculation is illustrated in

Figure 1. The function of this example is called

Objective Function Zero [8]. The formula for Rank

is:

Rank(N) = Rank(P) + rank_increment (1)

N denotes a node receiving a DIO message.

Rank(N) is the Rank derived from the received DIO

message and a wireless link quality. P denotes a node

sending a DIO message to node N. Rank(P) is the

current Rank value of P. The rank_increment is

defined as following:

rank_increment = (2*ETX) * MinHopRankIncrease (2)

ETX means the expected transmission number

from N to P. A smaller ETX translates into a

better-quality wireless link. MinHopRankIncrease is

set as 256 by default.

In this example, we assume that the ETX of

each wireless link is 4/3. At first, the Rank of the

gateway is defined as 0. Therefore, the Rank field of

the DIO sent by the gateway is always 0. When node

A receives DIO sent from the gateway, its Rank is

computed as:

Rank(A) = 0 + (2*4/3)*256 = 683.

If node A selects the gateway as its parent node,

its Rank will be 683. Hereafter, the Rank field of the

DIO message sent from node A will be 683. If node B

received the DIO message sent from node A, its Rank

is computed as:

Rank(B) = 683 + (2*4/3)*256 = 1366.

A DAGRank is derived from Rank form for

determination of parent relationships. The DAGRank

is defined as:

DAGRank = floor(Rank/MinHopRankIncrease) (3)

When selecting a parent, a node with the

smallest DAGRank will be selected.

Figure 1: An example of Rank calculation

Figure 2 shows an example DODAG

constructed by RPL when ETX of each wireless link

is 1. If there is another obstacle lying between node C

and node A, the quality of the wireless link (C, A)

may become worse. Assume that the ETX of link (C,

A) becomes 1.49, and node C’s DAGRank derived

from node A is still 4. In this case, node B is

apparently a better choice than node A, but node C

still selects node A as its parent node.

Figure 2: An example DODAG in which ETX of

each wireless link is 1

28

International Journal of Computer, Consumer and Control (IJ3C), Vol. 4, No.4 (2015)

If there is a noise source lying among nodes A,

B, and C, both the ETX of link (C, A) and link (C, B)

may become worse. Assume that the ETX of link (C,

A) and link (C, B) is 1.99, and C’s DAGRank derived

from node A or node B is 5. Thus, node C will not

select node Z. However, selecting node Z can reduce

almost 50% of sending time slots needed by node C.

In other words, selecting node Z can notably reduce

the power consumption of node C. This is a very

important issue in an industrial environment because

many sensors are/will be battery-powered.

The above examples explain some weaknesses

of RPL, so it motivates us to propose a centralized

routing framework for OpenWSN.

3. Architecture of OpenWSN

To the best of our knowledge, OpenWSN is the

only open-source project which supports TSCH

functionalities. Thus, we design and implement our

centralized routing framework based on OpenWSN.

In this section, we first describe the architecture of

OpenWSN. Then our new modules and the modified

modules will be described.

Figure 3 depicts the hardware architecture of

OpenWSN. There are three components in the

architecture: sensor, gateway, and PC. Sensors are the

devices which detect events or conditions of their

ambient. They forward the sensed data to a gateway

via IEEE 802.15.4e. The gateway not only plays the

role of an RPL root node, but also relays packets

from/to its associated wireless sensor network

to/from a PC with which it connects. The gateway

exchanges packets with the PC via a USB-to-TTL

serial cable. The PC may store the sensed data carried

in the packets from the wireless sensor network, or

just forwards the packets to the Internet. In addition,

the PC can forward packets from the Internet into the

wireless sensor network, or send packets to sensors

by its own.

Figure 3: Hardware architecture of OpenWSN

The OpenWSN software consists of two parts:

openwsn-fw and openwsn-sw. The openwsn-fw is

executed in the sensors and the gateway, while the

openwsn-sw is run in the PC.

Openwsn-fw is purely written in C

programming language. The software architecture of

openwsn-fw is illustrated in Figure 4. When the RES

module gets a frame from the IEEE802154E module,

it checks whether the sender is recorded in the

Neighbors module or not. If it is not found, the MAC

address of the sender will be recorded in the

Neighbors module, currently, openwsn-fw records at

most 10 neighbors. When reaching the limit, the

newly discovered neighbor is discarded. When the

ICMPv6PRL module receives a DIO message from a

neighbor, it updates the sender’s Rank value in the

Neighbors module. The recorded neighbor, which can

let the node have the smallest DAGRank, will be

selected as the parent node of the node. The

OpenBridge module is used by the gateway to

exchange packets with the PC.

Figure 4: Software architecture of openwsn-fw

Openwsn-sw is purely written in Python

programming language. The software architecture of

openwsn-sw is illustrated in Figure 5. In this figure,

the gray rectangles mean software modules, the white

pipe is an event bus, and the arrows are events. The

modules exchange events with each other through the

event bus. If a module is interested in a specific event,

it can register the event with the event bus. When a

module triggers an event, it puts the event into the

event bus. The event bus is responsible for

forwarding events to the modules which have

registered for the events.

36

29

International Journal of Computer, Consumer and Control (IJ3C), Vol. 4, No.4 (2015)

Figure 5: Software architecture of openwsn-sw

Figure 6 shows the event flow when receiving a

data packet from the gateway. The moteProbe module

receives a packet from the serial cable byte by byte.

When receiving a complete packet, the moteProbe

module forwards the packet to the moteConnector

module. The moteConnector module checks the type

of the packet. If the packet belongs to data packet, it

will be forwarded to the LBR module. The LBR

module performs 6LowPAN decompression for the

data packet and then sends it to an application

module. If there is no application module handling

the data packet, the LBR module will divert the data

packet to the openTun module. The openTun module

just forwards the data packet to the operating system

of the PC. Normally, the operating system forwards

the data packet to the Internet.

Figure 6: Event flow in openwsn-sw when

receiving data packet form gateway

Figure 7 shows the event flow when receiving a

data packet from the Internet. The openTun module

forwards the data packet to the LBR module for

6LowPAN compression. The compressed packet

traverses the moteConnector module, then the

moteProbe module, to the gateway.

Figure 7: Event flow in openwsn-sw when

receiving data packet form Internet

It is worth noting that the LBR module

currently does not support 6LowPAN

defragmentation, so the sensors must not generate

any packet which is unable to fit a single IEEE

802.15.4e frame.

4. Centralized Routing Framework

This section describes the proposed framework

for the provision of centralized routing in multi-hop

TSCH networks. The proposed framework is realized

by modifying both the openwsn-fw and openwsn-sw.

Figure 8 shows our modified openwsn-fw. We

modifies the Neighbors module for the storage of the

centralized routing rule. The Forwarding module is

modified in order to execute the centralized routing

rule. The RPL-related modules remains unchanged

since we leverage them to discover the network

topology. Besides, we add a new module, named

CR-fw. CR stands for Centralized Routing. The

CR-fw module is a task which communicates with the

PC via UDP connections. It periodically sends a UDP

packet containing the detected network status

information from local port 61617 to remote port

61617. The CR-fw module also receives its own

centralized routing rules from the PC on local port

61618. After receiving a centralized routing rule, it

updates the rule in the Neighbors module. Note that

the new and modified modules behave in the

traditional way when openwsn-fw runs in the

gateway.

36

30

International Journal of Computer, Consumer and Control (IJ3C), Vol. 4, No.4 (2015)

Figure 8: Modification of openwsn-fw

Figure 9 shows our modified openwsn-sw.

Currently, we develop a standalone process, CR-sw,

to interact with the original openwsn-sw because of

flexibility. In the near future, we may incorporate the

CR-sw module into openwsn-sw for performance

improvement. The CR-sw module performs three

tasks: (1) it collects the reported network status from

the wireless sensor network; (2) it generates routing

rules based on the collected network status

information and the known data rate of each sensor;

(3) it sends the new routing rule for an individual

sensor. In current version, we generate the new

routing rules manually for simplicity.

Figure 9: Modification of openwsn-sw

Figure 10 shows an example of a message flow

of the proposed framework for the network status

report. At first, the CR-fw module of sensor A reads

the information of itself and its neighbors from the

Neighbors module for the generation of a report

message. Then the CR-fw module sends out a report

message to its parent node, i.e. sensor B in this

example. The report message reaches the Forwarding

module of sensor B, and then is forwarded to the

gateway. The gateway relays the report message to

the openwsn-sw. Finally, openwsn-sw delivers the

report message to our CR-sw module.

Figure 10: Message flow for network status report

After generating centralized routing rules, the

CR-sw module sends each rule for its associated

sensor one at a time. The path for responding the rule

is the reverse of the path for reporting the network

status. Finally, the CR-fw module writes the rule into

the Neighbors module.

Figure 10: Message flow for centralized routing

rule

Figure 11 depicts the message format of our

network status report. It contains three kinds of fields:

Code, Itself, and Nbr. The Code field determines the

size of the Itself field and the number of the Nbr

fields. The Itself field contains the information about

the sensor which generates this message. The Nbr

filed has the information of a unique neighbor node.

Recall that the LBR module of openwsn-sw does not

support 6LowPAN decompression. Therefore, we

limit the maximum number of the Nbr fields to 3 so

to prevent the 6LowPAN fragmentation. Although the

limitation may forbid our CR-sw module from having

a complete knowledge of the wireless network, we

think the collected information is sufficient to make

good decisions. In addition, the information inside

the parentheses is the size of the field, and the size

unit is Byte.

Figure 11: Message format of network status

report

31

International Journal of Computer, Consumer and Control (IJ3C), Vol. 4, No.4 (2015)

Figure 12 shows the format of the Code field. It

contains three sub-fields: res, p, and Num of Nbr. In

this figure, the first row is the name of each sub-field,

the second row is the size, and the third row is the

possible values. The first sub-field is reserved for

future use. The p sub-field determines the size of the

Itself field. If the value of the p sub-field is 0, the size

of the Itself field is 10 Bytes. If the value of the p

sub-field is 1, the size of the Itself field is 11 Bytes.

The Num of Nbr sub-field indicates the number of

neighbor information in this message. The value of

this sub-field ranges from 0 to 15, although current

possible value ranges from 1 to 3. This design

reserves the flexibility for the provision of more

neighbor information in the case that OpenWSN

supports 6LowPAN fragmentation and

defragmentation someday.

Figure 12: Format of Code field

If the above p sub-field is 0, the format of the

Itself field is shown in Figure 13(a). The MAC

sub-field has the 64-bits MAC address of the sensor

which generates this message. The value of the Rank

sub-field is the Rank value generated by its own

sensor’s ICMPv6PRL module. If the above p

sub-field is 1, the format of the Itself field is shown in

Figure 13(b). The definitions of the first two are the

same with the ones shown in Figure 13(a). The

Power sub-field is the residual energy of the sensor,

whose size unit is %. Since the data rates of sensors

tend to be relatively low, e.g. no more than one

packet per second, the residual energy changes slowly.

Thus, it is unnecessary for a sensor to respond its

residual energy every time it reports.

Figure 13: Format of Itself field

Figure 14 shows the format of the Nbr field. It

contains four sub-fields: MAC, Rank, numTx, and

numTxAck. The MAC sub-field has the 64-bits MAC

address of the neighbor node. The value of the Rank

sub-field is the Rank value carried in the DIO

message sent from the neighbor. The numTx sub-field

is the number of data frames transmitted form its own

sensor to the neighbor. The numTxAck sub-field is the

number of ack frames received from the neighbor.

The ratio of the value of the numTx sub-field to the

one of the numTxAck sub-field is considered as the

ETX. When the value of the numTx sub-field equals

255, both of the numTx and numTxAck subfields are

divided by 2. If the value of the numTxAck subfield is

0, the ETX for this neighbor is set as 15 by default.

Figure 14: Format of Nbr field

Figure 15 shows the format of the command for

the centralized routing rule. The first sub-field

indicates the MAC address of a sensor should receive

this command. The second sub-field denotes the

MAC address of a new parent node for the sensor

specified by the first sub-field.

Figure 15: Format of command for centralized

routing rule

The modification of the Neighbors module is as

follows: (1) a data structure is added for the storage

of the MAC address of a new parent assigned by the

command for a routing rule. (2) a global variable,

isCentralized, is added. After receiving a command

for routing rule, this variable is set as True. If the

value of the ETX for the new parent specified in the

routing rule is below a threshold, the variable

continues to be True; otherwise, it will be False. The

key idea of the design is that a sensor can know the

quality of the wireless link between itself and its

parent for the centralized routing much earlier than

the CR-sw can. Therefore, if the reliability of the

parent for the centralized routing is not accepted,

sensors will switch back to the distributed routing.

Figure 16 shows the routing algorithm

implemented in our modified Forwarding module.

The Hybrid word means our algorithm can switch

between the centralized routing and the distributed

routing. A variable, mode, is used to indicate whether

an input packet should be routed in a centralized

fashion or not. By default, a packet is routed in a

traditional distributed fashion unless all the

conditions specified in lines 2, 3, 4, and 5 are

satisfied. The condition of line 2 means that we

currently support only UDP packet for simplicity.

Note that there are three types of traffics in a wireless

sensor network: up-stream, down-stream, and

peer-to-peer. An up-stream traffic is from a sensor to

a gateway, a down-stream traffic is the opposite, and

a peer-to-peer traffic is between any pair of sensors.

The condition of line 3 means only the up-stream

traffic can be routed in a centralized fashion since we

only assign a parent node for this purpose. We plan to

enable the centralized routing for other traffic types

in the near future. The condition of line 4 means that

the sensor should have been assigned a parent for the

centralized routing. The condition of line 5 requires

that the reliability of the parent for centralized routing

is acceptable. If it is not reliable enough, the variable,

isCentralized, is reset. Currently, the value of the

threshold T is set as 4 since there are at most 4

transmissions for a data frame in an IEEE 802.15.4e

32

International Journal of Computer, Consumer and Control (IJ3C), Vol. 4, No.4 (2015)

network. Finally, we select the next-hop relay based

on the value of the variable, mode, in line 9.

Algorithm Hybrid_Forwarding(packet):

1. mode = distributed

2. If packet ∈ UDP:

3. If packet.dst = gateway or packet.dst ∈

Internet:

4. If isCentralized = True:

5. If parent.ETX < Threshold T:

6. mode = centralized

7. else:

8. isCentralized False:

9. Forwarding(mode, packet)

End Algorithm

Figure 16: Algorithm of our hybrid routing

algorithm

5. Experiments

In order to validate our proposed framework,

we implemented it on OpenMote development kit [9],

as shown in Figure 17. The OpenMote-CC2538 is

equipped with a wireless microcontroller

System-on-Chip (SoC), CC2538 [10], which

incorporates a robust IEEE 802.15.4 radio. The

OpenBattery is an extension board composed of a

battery placeholder. The OpenBase is an interface

board for the OpenMote-CC2538. It enables the

OpenMote-CC2538 to communicate with a computer

through a serial port. The OpenBase can also be

powered via the serial port. The OpenMote-CC2538

can be mounted on an OpenBattery as a sensor or on

an OpenBase as a gateway.

Figure 17: Hardware for experiment

We further adopt CC2531 USB Evaluation

Module Kit [11], as shown in Figure 19, for an IEEE

802.15.4 packet sniffer. It is a USB Dongle which

can be mounted on a computer. SmartRF Protocol

Packet Sniffer [12] is the corresponding sniffer

software.

Figure 19: CC2531 USB Evaluation Module Kit

The overall experimental platform is shown in

Figure 18. The italic words indicate the last two bytes

of the 64-bit MAC addresses of their device.

Figure 18: Experimental platform

In the first experiment, sensor 0x84B4 was

turned on while sensor 0xF49B was turned off. When

observing that a network status report message was

sent from sensor 0x84B4, the CR-sw module was

asked to select sensor 0xF49B as a new parent for the

centralized routing. Via the sniffer’s graphic user

interface (GUI), we observed that sensor 0x84B4 sent

data frames to sensor 0xF49B hereafter. Apparently,

there was no ack frame from sensor 0xF49B since it

was currently shutdown. Then after a while, sensor

0x84B4 was switched back to the distributed routing

fashion, i.e. it sent data frame to the gateway directly.

In the second experiment, sensor 0x84B4 was

powered on first. When making sure that sensor

0x84B4 selected the gateway, we turned on sensor

0xF49B. After sensor 0xF49B joined the TSCH

network, we commanded sensor 0x84B4 to select

sensor 0xF49B. As we expected, the sniffer’s GUI

showed that sensor 0x84B4 sent data frames to sensor

0xF49B and latter responded ack frames to the

former. The above two experiments proved that the

proposed framework is feasible.

33

International Journal of Computer, Consumer and Control (IJ3C), Vol. 4, No.4 (2015)

6. Conclusions

In this paper, a framework is proposed for the

provision of the centralized routing functionality over

multi-hop Time-Slotted Channel-Hopping networks.

We leverage the existing distributed routing

mechanism for network status discovery. A network

status collection mechanism is developed for

providing the collected information to administrators

to make centralized routing rules. A command

distribution mechanism is also designed to notify

sensors about new routing rules. We further propose

a hybrid routing algorithm for sensors to switch

between the proposed centralized routing and the

existing distributed routing based on the network

conditions. Experiments on OpenMote development

kit prove that the proposed framework is feasible.

Future studies will address the problem of

generating optimal centralized routing rules without

the involvement of humans. In addition, large-scale

simulations will be conducted for performance

analysis.

References

[1]. T. Watteyne, X. Vilajosana, B. Kerkez, F.

Chraim, K. Weekly, Q. Wang, S. Glaser, and K.

Pister., “OpenWSN: A Standards-Based

Low-Power Wireless Development

Environment,” Wiley's Transactions on

Emerging Telecommunications Technologies,

vol. 23, no. 5, pp. 480-493, Aug. 2012.

[2]. IEC 62591 Ed. 1.0 b:2010, “Industrial

Communication Networks -- Wireless

Communication Network and Communication

Profiles -- WirelessHART™,” 2010.

[3]. ISA, “Wireless systems for industrial

automation: Process control and related

applications”, ISA 100.11a, May 2008.

[4]. IEEE, “IEEE Standard for Local and

metropolitan area networks -- Part 15.4:

Low-Rate Wireless Personal Area Networks

(LR-WPANs) Amendment 1: MAC sublayer”,

IEEE Std. 802.15.4e-2012, Apr. 2012.

[5]. J. Hui, Ed. and P. Thubert, “Compression

Format for IPv6 Datagrams over IEEE

802.15.4-Based Networks”, RFC 6282, DOI

10.17487/RFC6282, Sep. 2011.

[6]. T. Winter, Ed., P. Thubert, Ed., A. Brandt, J.

Hui, R. Kelsey, P. Levis, K. Pister, R. Struik,

JP. Vasseur, and R. Alexander, “RPL: IPv6

Routing Protocol for Low-Power and Lossy

Networks”, RFC 6550, DOI

10.17487/RFC6550, Mar. 2012,

[7]. Z. Shelby, K. Hartke, and C. Bormann, “The

Constrained Application Protocol (CoAP)”,

RFC 7252, DOI 10.17487/RFC7252, Jun.

2014.

[8]. P. Thubert, Ed., “Objective Function Zero for

the Routing Protocol for Low-Power and Lossy

Networks (RPL)”, RFC 6552, Mar. 2012

[9]. OpenMote. < http://www.openmote.com/>.

[10]. CC2538. <

http://www.ti.com/product/CC2538>.

[11]. CC2531EMK. <

http://www.ti.com/tool/cc2531emk>.

[12]. SmartRF Protocol Packet Sniffer. <

http://www.ti.com/tool/packet-sniffer>

Yun-Shuai Yu obtained his

B.S., M.S., and Ph.D. degrees in

electrical engineering from

National Cheng Kung

University, Taiwan, in 2002,

2004, and 2011 respectively. He

is an Assistant Professor in the

Depar t me nt o f E lec t r o n ic

Engineering at National Chin-Yi University of

Technology. His research interests include Internet

of Thing, wireless sensor network, embedded

system, and media streaming.

34

