
International Journal of Computer, Consumer and Control (IJ3C), Vol. 5, No.1 (2016)

Robust Voxelization of Arbitrary Meshes
1,*

Hung-Kuang Chen and
1
Chi-Yuan Tu

Abstract

Fast sliced-based voxelization has attracted

much attention in recently years for its excellence in

runtime efficiency. However, most of the proposed

methods failed to derive correct results from

non-manifold meshes containing boundaries or

interpenetrations. Utilization of such incorrect results

may fail for a number of further applications such as

thinning and collision detections, etc. To address this

issue, we begin with a process called vertex grouping

to find maximum connected components from the

input mesh, followed by applying a slice-based solid

voxelization to each part of the input mesh. The final

voxel set is then derived by merging voxels of all the

parts. According to the experimental results, the new

method is capable of deriving robust continuous

volume data with no erroneous and redundant voxels,

which is useful for a number of further applications

such as the collision detection and skeleton

extraction.

Keywords: planetary gear train, cam, innovation

design, variable speed mechanism.

1. Introduction

Recently the innovation of fast graphics

accelerators and efficient volume rendering

techniques introduced an explosive growth of volume

rendering related applications. Consequently,

real-time voxelization of the surface meshes as one of

the essential techniques of volume rendering has

gained much attention and was intensively studied.

The concept of scanning convert 3D geometric

objects into their discrete voxel representation was

first introduced by Arie Kaufman in 1986[13]. In

comparison with the surface based representations,

volumetric representation captures not only the

surface details but also the internal variations of a 3D

object. According to an overview done by Arie

Kaufman in [12], for common volume rendering

approaches, the input volume data are usually

presented in a discrete form, called voxels, as its direct

or intermediate representation, which could be

collected either by computing from scientific

visualization or by sampling the real-world objects

using sensing technologies such as CT, MRI, remote

sensing, 3D range scanning, etc.

Despite the traditional applications in medial

image visualization domain [9], the focus of

voxel-based representation applications has been on

the improvement of the runtime efficiency of

collision detection [8][1] and the curve skeleton

extraction [16][21]. However, most current

*Corresponding Author: Hung-Kuang Chen
(E-mail: hank@ncut.edu.tw)
1 Electronic Engineering Department, National Chin-Yi University

of Technology, Taichung, Taiwan 40109.

43

International Journal of Computer, Consumer and Control (IJ3C), Vol. 5, No.1 (2016)

frame-based techniques accept only manifold meshes.

For non-manifold meshes or those consisting of

intersecting parts such as the Al Capone model as

shown in Fig. 1, the computed result is very likely to

be incorrect.

Figure 1: The Al Capone mesh.

According to our study, there exists no feasible

solution to effectively deal with such problems so far.

To cope with these problems, we proposed a novel

voxelization method adaptable to arbitrary meshes,

called adaptive voxelization. The new method begins

with a process called vertex grouping to segment the

input mesh into disjoined parts followed by applying a

render-based solid voxelization to each segmented

parts of the input mesh. The final result, namely, the

complete voxel set, is then derived by merging all the

voxels.

To address these issues, we propose a novel

robust approach to surface mesh voxelization. The

new method is able to voxelize both manifold and

non-manifold meshes as well as those consisted of

intersecting parts. Moreover, with our new method,

there is no need to repair cracked meshes in advance

to ensure that the computed results contains no excess

incorrect voxel outside the model range.

2. Terminologies

Prior to the discussion of our approach, we

briefly introduce a number of related notations and

terminologies as follows[15].

Assuming an object is initially be represented

by a polygonal mesh M = (V, F), where V is a set of

points represented by a 3-tuple of real numbers, (vx, vy,

vz), in 3D Euclidean space R
3
; F is a set of triangular

faces F defined by a subset of three different vertices

of V represented as a 3-tuple of vertex indices, f = (Ia,

Ib, Ic) ∈ I
3
, to the vertices of V.

Definition 1 The voxelization of a mesh M is

concerned with the discretization of

M into a set of voxels S that ”best”

represents M within the discrete

voxel space Σ ⊂ Z
3
.

Definition 2 A voxel is a unit cubic volume

centered at a grid point of a 3D

discrete space Z3, which is assigned

explicitly with values of either ‘1’ or

‘0’.

Definition 3 A voxel of value ‘1’ is called a

black or a foreground voxel

indicating the presence an opaque

sample.

Definition 4 A voxel with ‘0’ value is called a

white or a background voxel

corresponding to a void space or the

presence of a transparent sample.

44

International Journal of Computer, Consumer and Control (IJ3C), Vol. 5, No.1 (2016)

In particular, we denote the universal set of

voxels, the set of black voxels, and the set of white

voxels respectively as , Σ, S, and Σ − S.

3. Related Works

The methods of voxelization can be classified

into two types, i.e., the surface voxelization and the

solid voxelization. In surface voxelization; only the

boundary voxels corresponding to the surfaces are

recorded, while in solid voxelization the interior

voxels corresponding to the inner parts of the model

are also kept in the final result.

In [11], Aggeliki Karabassi et. al. proposed a

way to do voxelization by making use of the depth

values stored in the Z-buffer, which measures the

maximum and minimum distance to each face of the

bounding box by parallel projections. However, this

method may result in incorrect voxels if the object has

hidden cavities.

An improvement toward better computational

efficiency using hardware acceleration was reported

later by Fang and Chen [5][6]. Their method started

with slicing the volume space defined by the bounding

box covering the object along the directions of the

three coordinate axes, followed by rendering the

sliced sections to the frame buffer, and then ending up

with storing the rendered slices into a 3D texture.

Depending on the rendering options, the result can be

either surface or solid. The slice-based method

benefits from hardware acceleration but suffers from

incomplete boundary and missing thin region

problems.

With the help of GPU, E. Eisemann et al.

proposed a real-time voxelization approach[3][4]. In a

later work, Zhao Dong et al.[2] presented another

computational efficient voxelization algorithm for

complex polygonal models by exploiting GPUs. They

first convert the model into three discrete voxel spaces

according to its surface orientation. The resultant

voxels are encoded as 2D textures and stored in three

intermediate sheet buffers called directional sheet

buffers. These buffers are finally synthesized into one

worksheet, which records the volumetric

representation of the target. The whole algorithm

traverses the geometric model only once and is

accomplished entirely in GPU.

In addition, another branch of voxelization

approaches are based on layer depth images

generated by ray-tracing. Another data-parallel

approaches for conservative and tile-based

voxelizations are proposed by [19] in which both

surface and solid voxelization methods are discussed.

In addition, they proposed an octree-based sparse

representation of the voxel sets for better utilization

of memory resources, which enables higher

voxelization resolution over 4096× 4096× 4096.

Currently, most voxelization techniques

proposed so far only accepts closed or watertight

objects as their input. For the non-manifold meshes

or those with intersecting parts, the aforementioned

methods cannot be applied to derive complete and

correct volume data. To cope with such needs, Fakir

S. Noorudin et. al. [17] proposed an election-based

voxelization technique for the non-manifold meshes.

To deal with the cracks and the boundaries of

the input mesh, they proposed a parity count method

that begins with scan conversions by orthographic

45

International Journal of Computer, Consumer and Control (IJ3C), Vol. 5, No.1 (2016)

projections in 13 directions, and then decided the

final volume data by a majority vote. For

interpenetrating subparts, they proposed a ray

stabbing method that keeps only the first depth and

the last depth samples for each ray. Consequently, a

voxel is considered as an interior voxel in the final

volume data only when the scan conversions in all

projections classify the voxel as interior. Since these

two techniques are not compatible with each other,

when an input mesh contains both cracks/boundaries

and interpenetrating subparts, they needs an

additional repair process to seal the cracks in the first

place, and then applies the ray-stabbing method

afterwards to get the final volume data.

4. Our Robust Voxelization

Approach

As we have mentioned earlier, previous works

mostly constrained the input to be a watertight mesh.

Only few provides solution for non-manifold meshes

or those with interpenetrations. For models created

for computer animation, a common way is to

construct the model by means of a set of

components[7][10]; more often, owing to some

special needs such as cloth simulation[14],

fabrication[18], and 3D scanning[20] etc., the model

often consists of interpenetrating subparts. For these

models, traditional solid voxelization methods mostly

failed to find the interior voxels correctly, resulting in

incomplete boundaries.

Furthermore, unwanted holes might be

introduced in the interpenetrating regions with

discontinuous volumetric data and defective visual

appearance. A further use of such voxelization result,

e.g., the skeletonization, is very likely to fail due to

the defects. To solve this problem, we suggest a more

robust voxelization approach depicted by the

flowchart as shown in Fig. 2.

Figure 2: The flowchart of our robust voxelization

approach.

2.1 Vertex Grouping

The vertex grouping process is used to find

connected components from the input mesh on the

basis of the given topological relationship. It is

equivalent to computing the connected components of

a graph, which usually takes only linear time using

either breadth-first search or depth-first search. In our

approach, we begin with the assignment of a unique

tag value to each vertex of the mesh representing its

group ID followed by a merging process that

iteratively replaces the tags of the vertices with the

smallest tag value of their neighboring vertices. The

46

International Journal of Computer, Consumer and Control (IJ3C), Vol. 5, No.1 (2016)

algorithm of vertex grouping is summarized as

follows.

In comparison with the traditional breadth-first

and depth-first approach, our method performs fully

in parallel by processing each vertex independently

from the others. The merging stopped with no vertex

has to alter its ID tag. An example illustrating such

process is shown in Figs. 3(a)-(d).

(a)

(c)

Figure 3: The vertex grouping process. : (a)

assigning vertex tag ID (different

color represents different tags); (b)-(c)

merging connected regions by

replacing the tag of a vertex with the

smallest tag value in its neighbouring

vertices; (d) the final result.

After vertex grouping, the input mesh is

subdivided into a number of maximally connected

components. In the example of Al Capone mesh

given in Fig. 4, twenty one maximally connected

components are found from the original mesh.

Figure 4: The twenty one maximally connected

components from the Al Capone mesh

found by the vertex grouping process.

47

International Journal of Computer, Consumer and Control (IJ3C), Vol. 5, No.1 (2016)

2.2 Slice-based Voxelization

To voxelize the submeshes, we adopted a

slice-based, or frame-based approach similar to Fang

and Chen [5]. Initially, the model is aligned and

normalized to a box volume later considered as the

volume space of the model and its subparts. To

prevent from the defects resulted by the incomplete

boundaries and the thin regions, the voxelization is

done individually to each subpart in the same volume

space by a three-pass sliced-based solid voxelization

process that converts the model along the directions of

the three coordinate axes.

2.3 Voxels Synthesis

After the voxelizations of the subparts have

completed, the voxel sets are then merged by a simple

process as follows to get the final complete volumetric

representation. Figures 5(a)-(c) illustrate the process

of voxelization. Each vertex-group/subpart of the

model is individually voxelized by scanning along the

directions of the X, Y, and Z axis of the coordinate

system.

Figure 5: Adaptive solid voxelization in the

direction of the (a) X-axis, (b) Y-axis,

and (c) Z-axis.

Let the voxel sets derived by scanning a subpart

Si of the input mesh M along the directions of the X, Y,

and Z axis of the coordinate system be Si x,Si y,Si z,

respectively. The final voxel set S is determined as

follows.

With slice-based voxelization, the result

obtained by scanning along a single direction may

have the problems of incomplete boundary and

missing thin regions[5]. For most cases, the result

determined by performing majority vote over the

directions of X, Y , and Z axes is sufficiently reliable.

5. Experimental Results

The experiments presented in this paper are

performed on a PC equipped with Intel-Pentium

Dual-Core CPU E5300 processor with 2GB RAM and

an ATI Radeon HD 4550 powered graphics display

card. In addition, all the programs are implemented

with Microsoft Visual C++ 2008 running on

Microsoft Windows 7.

Since our method emphasizes on its capability

of dealing with non-manifold meshes and the meshes

with interpenetrating parts, the test models we adopted

in the experiments are either non-manifold or those

with interpenetrations. Most of them are downloaded

from the websites of the Aim@Shape and the Stanford

3D Scanning Repository. An example of such model

has been given in Fig. 1, namely, the Al Capone mesh,

comprising 21 inter-penetrating components.

48

International Journal of Computer, Consumer and Control (IJ3C), Vol. 5, No.1 (2016)

To outline the differences between our

approach and the traditional slice-based method, Fig.

6 shows the result derived from Fang and Chen’s

method[5].

Figure 6: Upper row: the voxelization results by

Fang and Chen’s method[5]; lower row:

the voxelization results by our method.

According to the results shown in Figure 6, the

rendered image shows that a number of holes can be

found at the interpenetrating areas. Furthermore,

according to the sliced-view of the distance map, some

parts of the voxel sets are discontinuous, which

implies the presence of unwanted cracks. These

problems are caused by the duplicated boundaries

formed in the inter-penetrating regions in incomplete

boundaries and holes. Such error-prone dataset may

cause the follow-up applications such as the skeleton

extraction deriving incorrect results. With our

adaptive method, the result presented in Fig. 6 has no

such problems.

To provide more empirical evidences, a number

of additional test results on non-manifold meshes and

those with interpenetrations are presented in Fig. 7.

Figure 7: The results obtained from our adaptive

voxelization method for the Hand,

Bunny, Dinopet, and Teapot meshes: left,

the input mesh; middle, the voxel set;

right, a sliced-view with coloured

distance map.

The continuity of resulting volume data can be

observed from a sliced-view of the coloured distance

map along Z-axis presented in the right most column

of Fig. 7; in which, the variation in colours of the

image corresponds with the distance to the surface.

For the non-manifold meshes, the Hand and Bunny,

the final volume data are closed, continuous, and have

no unwanted holes. For meshes comprising many

interpenetrating subparts, i.e., the Dinopet and Teapot,

the voxel sets are continuous and contain no unwanted

holes. The numeric data from the experiments on the

49

International Journal of Computer, Consumer and Control (IJ3C), Vol. 5, No.1 (2016)

meshes with interpenetrations are listed in Table 1.

Since most of the calculations are performed by CPU,

the execution times are relatively longer than those

implemented on GPUs.

Table 1: The results of the meshes with

interpenetrating parts

According to the results presented in Table 1,

we may find that the total execution time is adversely

influenced by the number of sub-parts, that means

that a longer execution time is required by a model

with more sub-parts.

6. Conclusions

In this paper we proposed a robust solid

voxelization approach to a wild range of inputs

including manifold, non-manifold meshes, and those

with interpenetrations without using model repair and

user intervention. According to the experimental

results, the new method is capable of deriving robust

continuous volume data of complete boundaries with

no erroneous and redundant voxels, which is useful

for a number of further applications such as the

collision detection and skeleton extraction.

Furthermore, it is possible to use an alternative

algorithm for voxelization. Provided that the

efficiency is prominent, acceleration by parallel

computing on GPU can be put into practice using

GPU-based voxelization methods. Despite that our

method is capable of processing meshes with cracks

and interpenetrations for meshes with very thin shells

or tinny features, the sampling resolution still has

great impact on the correctness of voxelization.

References

[1]. Allard, J., Faure, F., Courtecuisse, H., Falipou,

F., Duriez, C., Kry, P.G.: Volume contact

constraints at arbitrary resolution. ACM Trans.

Graph. 29(4), 82:1–82:10 (2010). DOI

10.1145/1778765.1778819. URL

http://doi.acm.org/10.1145/1778765.1778819

[2]. Dong, Z., Chen, W., Bao, H., Zhang, H., Peng,

Q.: Real-time voxelization for complex

polygonal models. In: Computer Graphics and

Applications, pp. 43–50 (2004). DOI

10.1109/PCCGA.2004.1348333

[3]. Eisemann, E., Decoret, X.: Fast scene

voxelization and applications. In: Proceedings

of the 2006 Symposium on Interactive 3D

Graphics and Games, I3D ’06, pp. 71–78.

ACM, New York, NY, USA (2006). DOI

10.1145/1111411.1111424. URL

http://doi.acm.org/10.1145/1111411.1111424

[4]. Eisemann, E., Decoret, X.: Single-pass gpu

solid voxelization for real-time applications. In:

Proceedings of Graphics Interface 2008, GI ’08,

pp. 73–80. Canadian Information Processing

Society, Toronto, Ont., Canada, Canada (2008).

URL

http://dl.acm.org/citation.cfm?id=1375714.137

5728

[5]. Fang, S., Chen, H.: Hardware accelerated

voxelization. Computers & Graphics 24(3), 433

– 442 (2000). DOI

http://dx.doi.org/10.1016/S0097-8493(00)0003

8-8. URL

http://www.sciencedirect.com/science/article/pi

i/S0097849300000388

[6]. Fang, S., Liao, D.: Fast csg voxelization by

frame buffer pixel mapping. In: Proceedings of

the 2000 IEEE Symposium on Volume

Visualization, VVS ’00, pp. 43–48. ACM, New

York, NY, USA (2000). DOI

10.1145/353888.353896. URL

http://doi.acm.org/10.1145/353888.353896

50

International Journal of Computer, Consumer and Control (IJ3C), Vol. 5, No.1 (2016)

[7]. Funkhouser, T., Kazhdan, M., Shilane, P., Min,

P., Kiefer, W., Tal, A., Rusinkiewicz, S.,

Dobkin, D.: Modeling by example. ACM Trans.

Graph. 23(3), 652–663 (2004). DOI

10.1145/1015706.1015775. URL

http://doi.acm.org/10.1145/1015706.1015775

[8]. Heidelberger, B., Teschner, M., Gross, M.H.:

Real-time volumetric intersections of

deforming objects. In: Proceedings of Vision,

Modeling, and Visualization 2003, vol. 3, pp.

461–468. Akademische Verlagsgesellschaft

Aka GmbH, Berlin, Germany (2003)

[9]. Hosssain, Z., Moller, T.: Edge aware

anisotropic diffusion for 3d scalar data. IEEE

Transactions on Visualization and Computer

Graphics 16(6), 1376–1385 (2010). DOI

10.1109/TVCG.2010.147

[10]. Jain, A., Thormählen, T., Ritschel, T.,

Seidel, H.P.: Exploring shape variations by

3d-model decomposition and part-based

recombination. Comput. Graph. Forum

31(2pt3), 631–640 (2012). DOI

10.1111/j.1467-8659.2012.03042.x. URL

http://dx.doi.org/10.1111/j.1467-8659.2012.030

42.x

[11]. Karabassi, E.A., Papaioannou, G., Theoharis,

T.: A fast depth-buffer-based voxelization

algorithm. Journal of Graphics Tools 4(4), 5–

10 (1999). DOI

10.1080/10867651.1999.10487510. URL

http://dx.doi.org/10.1080/10867651.1999.1048

7510

[12]. Kaufman, A., Cohen, D., Yagel, R.: Volume

graphics. Computer 26(7), 51–64 (1993). DOI

10.1109/MC.1993.274942. URL

http://dx.doi.org/10.1109/MC.1993.274942

[13]. Kaufman, A., Shimony, E.: 3d scan-conversion

algorithms for voxel-based graphics. In:

Proceedings of the 1986 Workshop on

Interactive 3D Graphics, I3D ’86, pp. 45–75.

ACM, New York, NY, USA (1987). DOI

10.1145/319120.319126. URL

http://doi.acm.org/10.1145/319120.319

126

[14]. Li, J., Lu, G.: Modeling 3d garments by

examples. Comput. Aided Des. 49, 28–41

(2014). DOI 10.1016/j.cad.2013.12.005. URL

http://dx.doi.org/10.1016/j.cad.2013.12.005

[15]. Ma, C.M., Wan, S.Y.: Parallel thinning

algorithms on 3d (18, 6) binary images.

Computer Vision and Image Understanding

80(3), 364–378 (2000)

[16]. Miklos, B., Giesen, J., Pauly, M.: Discrete scale

axis representations for 3d geometry. ACM

Trans. Graph. 29(4), 101:1–101:10 (2010). DOI

10.1145/1778765.1778838. URL

http://doi.acm.org/10.1145/1778765.1778838

[17]. Nooruddin, F.S., Turk, G.: Simplification and

repair of polygonal models using volumetric

techniques. IEEE Transactions on Visualization

and Computer Graphics 9(2), 191–205 (2003).

DOI 10.1109/TVCG.2003.1196006

[18]. Schulz, A., Shamir, A., Levin, D.I.W.,

Sitthi-amorn, P., Matusik, W.: Design and

fabrication by example. ACM Trans. Graph.

33(4), 62:1–62:11 (2014). DOI

10.1145/2601097.2601127. URL

http://doi.acm.org/10.1145/2601097.2601127

[19]. Schwarz, M., Seidel, H.P.: Fast parallel surface

and solid voxelization on gpus. ACM Trans.

Graph. 29(6), 179:1–179:10 (2010). DOI

10.1145/1882261.1866201. URL

http://doi.acm.org/10.1145/1882261.1866201

[20]. Shen, C.H., Fu, H., Chen, K., Hu, S.M.:

Structure recovery by part assembly. ACM

Trans. Graph. 31(6), 180:1–180:11 (2012). DOI

10.1145/2366145.2366199. URL

http://doi.acm.org/10.1145/2366145.2366199

[21]. Wang, Y.S., Lee, T.Y.: Curve-skeleton

extraction using iterative least squares

optimization. IEEE Transactions on

Visualization and Computer Graphics 14(4),

926–936 (2008). DOI 10.1109/TVCG.2008.38

51

http://doi.acm.org/10.1145/319120.319126
http://doi.acm.org/10.1145/319120.319126

