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Abstract 

Fast sliced-based voxelization has attracted 

much attention in recently years for its excellence in 

runtime efficiency. However, most of the proposed 

methods failed to derive correct results from 

non-manifold meshes containing boundaries or 

interpenetrations. Utilization of such incorrect results 

may fail for a number of further applications such as 

thinning and collision detections, etc. To address this 

issue, we begin with a process called vertex grouping 

to find maximum connected components from the 

input mesh, followed by applying a slice-based solid 

voxelization to each part of the input mesh. The final 

voxel set is then derived by merging voxels of all the 

parts. According to the experimental results, the new 

method is capable of deriving robust continuous 

volume data with no erroneous and redundant voxels, 

which is useful for a number of further applications 

such as the collision detection and skeleton 

extraction. 

Keywords: planetary gear train, cam, innovation 

design, variable speed mechanism. 

 

 

 

 

 

 

1. Introduction 

Recently the innovation of fast graphics 

accelerators and efficient volume rendering 

techniques introduced an explosive growth of volume 

rendering related applications. Consequently, 

real-time voxelization of the surface meshes as one of 

the essential techniques of volume rendering has 

gained much attention and was intensively studied. 

The concept of scanning convert 3D geometric 

objects into their discrete voxel representation was 

first introduced by Arie Kaufman in 1986[13]. In 

comparison with the surface based representations, 

volumetric representation captures not only the 

surface details but also the internal variations of a 3D 

object. According to an overview done by Arie 

Kaufman in [12], for common volume rendering 

approaches, the input volume data are usually 

presented in a discrete form, called voxels, as its direct 

or intermediate representation, which could be 

collected either by computing from scientific 

visualization or by sampling the real-world objects 

using sensing technologies such as CT, MRI, remote 

sensing, 3D range scanning, etc. 

Despite the traditional applications in medial 

image visualization domain [9], the focus of 

voxel-based representation applications has been on 

the improvement of the runtime efficiency of 

collision detection [8][1] and the curve skeleton 

extraction [16][21]. However, most current 
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frame-based techniques accept only manifold meshes. 

For non-manifold meshes or those consisting of 

intersecting parts such as the Al Capone model as 

shown in Fig. 1, the computed result is very likely to 

be incorrect. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The Al Capone mesh. 

 

According to our study, there exists no feasible 

solution to effectively deal with such problems so far. 

To cope with these problems, we proposed a novel 

voxelization method adaptable to arbitrary meshes, 

called adaptive voxelization. The new method begins 

with a process called vertex grouping to segment the 

input mesh into disjoined parts followed by applying a 

render-based solid voxelization to each segmented 

parts of the input mesh. The final result, namely, the 

complete voxel set, is then derived by merging all the 

voxels. 

To address these issues, we propose a novel 

robust approach to surface mesh voxelization. The 

new method is able to voxelize both manifold and 

non-manifold meshes as well as those consisted of 

intersecting parts. Moreover, with our new method, 

there is no need to repair cracked meshes in advance 

to ensure that the computed results contains no excess 

incorrect voxel outside the model range. 

2. Terminologies 

Prior to the discussion of our approach, we 

briefly introduce a number of related notations and 

terminologies as follows[15]. 

Assuming an object is initially be represented 

by a polygonal mesh M = (V, F), where V is a set of 

points represented by a 3-tuple of real numbers, (vx, vy, 

vz), in 3D Euclidean space R
3
; F is a set of triangular 

faces F defined by a subset of three different vertices 

of V represented as a 3-tuple of vertex indices, f = (Ia, 

Ib, Ic) ∈ I
3
, to the vertices of V. 

Definition 1  The voxelization of a mesh M is 

concerned with the discretization of 

M into a set of voxels S that ”best” 

represents M within the discrete 

voxel space Σ ⊂ Z
3
. 

Definition 2  A voxel is a unit cubic volume 

centered at a grid point of a 3D 

discrete space Z3, which is assigned 

explicitly with values of either ‘1’ or 

‘0’. 

Definition 3  A voxel of value ‘1’ is called a 

black or a foreground voxel 

indicating the presence an opaque 

sample. 

Definition 4  A voxel with ‘0’ value is called a 

white or a background voxel 

corresponding to a void space or the 

presence of a transparent sample. 
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In particular, we denote the universal set of 

voxels, the set of black voxels, and the set of white 

voxels respectively as , Σ, S, and Σ − S. 

3. Related Works 

The methods of voxelization can be classified 

into two types, i.e., the surface voxelization and the 

solid voxelization. In surface voxelization; only the 

boundary voxels corresponding to the surfaces are 

recorded, while in solid voxelization the interior 

voxels corresponding to the inner parts of the model 

are also kept in the final result. 

In [11], Aggeliki Karabassi et. al. proposed a 

way to do voxelization by making use of the depth 

values stored in the Z-buffer, which measures the 

maximum and minimum distance to each face of the 

bounding box by parallel projections. However, this 

method may result in incorrect voxels if the object has 

hidden cavities. 

An improvement toward better computational 

efficiency using hardware acceleration was reported 

later by Fang and Chen [5][6]. Their method started 

with slicing the volume space defined by the bounding 

box covering the object along the directions of the 

three coordinate axes, followed by rendering the 

sliced sections to the frame buffer, and then ending up 

with storing the rendered slices into a 3D texture. 

Depending on the rendering options, the result can be 

either surface or solid. The slice-based method 

benefits from hardware acceleration but suffers from 

incomplete boundary and missing thin region 

problems. 

 

 

With the help of GPU, E. Eisemann et al. 

proposed a real-time voxelization approach[3][4]. In a 

later work, Zhao Dong et al.[2] presented another 

computational efficient voxelization algorithm for 

complex polygonal models by exploiting GPUs. They 

first convert the model into three discrete voxel spaces 

according to its surface orientation. The resultant 

voxels are encoded as 2D textures and stored in three 

intermediate sheet buffers called directional sheet 

buffers. These buffers are finally synthesized into one 

worksheet, which records the volumetric 

representation of the target. The whole algorithm 

traverses the geometric model only once and is 

accomplished entirely in GPU. 

In addition, another branch of voxelization 

approaches are based on layer depth images 

generated by ray-tracing. Another data-parallel 

approaches for conservative and tile-based 

voxelizations are proposed by [19] in which both 

surface and solid voxelization methods are discussed. 

In addition, they proposed an octree-based sparse 

representation of the voxel sets for better utilization 

of memory resources, which enables higher 

voxelization resolution over 4096× 4096× 4096. 

Currently, most voxelization techniques 

proposed so far only accepts closed or watertight 

objects as their input. For the non-manifold meshes 

or those with intersecting parts, the aforementioned 

methods cannot be applied to derive complete and 

correct volume data. To cope with such needs, Fakir 

S. Noorudin et. al. [17] proposed an election-based 

voxelization technique for the non-manifold meshes.  

To deal with the cracks and the boundaries of 

the input mesh, they proposed a parity count method 

that begins with scan conversions by orthographic 
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projections in 13 directions, and then decided the 

final volume data by a majority vote. For 

interpenetrating subparts, they proposed a ray 

stabbing method that keeps only the first depth and 

the last depth samples for each ray. Consequently, a 

voxel is considered as an interior voxel in the final 

volume data only when the scan conversions in all 

projections classify the voxel as interior. Since these 

two techniques are not compatible with each other, 

when an input mesh contains both cracks/boundaries 

and interpenetrating subparts, they needs an 

additional repair process to seal the cracks in the first 

place, and then applies the ray-stabbing method 

afterwards to get the final volume data. 

4. Our Robust Voxelization 

Approach 

As we have mentioned earlier, previous works 

mostly constrained the input to be a watertight mesh. 

Only few provides solution for non-manifold meshes 

or those with interpenetrations. For models created 

for computer animation, a common way is to 

construct the model by means of a set of 

components[7][10]; more often, owing to some 

special needs such as cloth simulation[14], 

fabrication[18], and 3D scanning[20] etc., the model 

often consists of interpenetrating subparts. For these 

models, traditional solid voxelization methods mostly 

failed to find the interior voxels correctly, resulting in 

incomplete boundaries.  

Furthermore, unwanted holes might be 

introduced in the interpenetrating regions with 

discontinuous volumetric data and defective visual 

appearance. A further use of such voxelization result, 

e.g., the skeletonization, is very likely to fail due to 

the defects. To solve this problem, we suggest a more 

robust voxelization approach depicted by the 

flowchart as shown in Fig. 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: The flowchart of our robust voxelization 

approach. 

 

2.1 Vertex Grouping 

The vertex grouping process is used to find 

connected components from the input mesh on the 

basis of the given topological relationship. It is 

equivalent to computing the connected components of 

a graph, which usually takes only linear time using 

either breadth-first search or depth-first search. In our 

approach, we begin with the assignment of a unique 

tag value to each vertex of the mesh representing its 

group ID followed by a merging process that 

iteratively replaces the tags of the vertices with the 

smallest tag value of their neighboring vertices. The 
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algorithm of vertex grouping is summarized as 

follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In comparison with the traditional breadth-first 

and depth-first approach, our method performs fully 

in parallel by processing each vertex independently 

from the others. The merging stopped with no vertex 

has to alter its ID tag. An example illustrating such 

process is shown in Figs. 3(a)-(d). 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

 

 

 

(c) 

Figure 3: The vertex grouping process. : (a) 

assigning vertex tag ID ( different 

color represents different tags); (b)-(c) 

merging connected regions by 

replacing the tag of a vertex with the 

smallest tag value in its neighbouring 

vertices; (d) the final result. 

 

After vertex grouping, the input mesh is 

subdivided into a number of maximally connected 

components. In the example of Al Capone mesh 

given in Fig. 4, twenty one maximally connected 

components are found from the original mesh. 

 

 

 

 

 

 

 

Figure 4: The twenty one maximally connected 

components from the Al Capone mesh 

found by the vertex grouping process. 

 

 

 

 

 

47



International Journal of Computer, Consumer and Control (IJ3C), Vol. 5, No.1 (2016) 

 

2.2 Slice-based Voxelization 

To voxelize the submeshes, we adopted a 

slice-based, or frame-based approach similar to Fang 

and Chen [5]. Initially, the model is aligned and 

normalized to a box volume later considered as the 

volume space of the model and its subparts. To 

prevent from the defects resulted by the incomplete 

boundaries and the thin regions, the voxelization is 

done individually to each subpart in the same volume 

space by a three-pass sliced-based solid voxelization 

process that converts the model along the directions of 

the three coordinate axes. 

2.3 Voxels Synthesis 

After the voxelizations of the subparts have 

completed, the voxel sets are then merged by a simple 

process as follows to get the final complete volumetric 

representation. Figures 5(a)-(c) illustrate the process 

of voxelization. Each vertex-group/subpart of the 

model is individually voxelized by scanning along the 

directions of the X, Y, and Z axis of the coordinate 

system. 

 

 

 

 

 

 

 

 

Figure 5: Adaptive solid voxelization in the 

direction of the (a) X-axis, (b) Y-axis, 

and (c) Z-axis. 

 

 

 

Let the voxel sets derived by scanning a subpart 

Si of the input mesh M along the directions of the X, Y, 

and Z axis of the coordinate system be Si x,Si y,Si z, 

respectively. The final voxel set S is determined as 

follows. 

 

 

 

With slice-based voxelization, the result 

obtained by scanning along a single direction may 

have the problems of incomplete boundary and 

missing thin regions[5]. For most cases, the result 

determined by performing majority vote over the 

directions of X, Y , and Z axes is sufficiently reliable. 

5. Experimental Results 

The experiments presented in this paper are 

performed on a PC equipped with Intel-Pentium 

Dual-Core CPU E5300 processor with 2GB RAM and 

an ATI Radeon HD 4550 powered graphics display 

card. In addition, all the programs are implemented 

with Microsoft Visual C++ 2008 running on 

Microsoft Windows 7. 

Since our method emphasizes on its capability 

of dealing with non-manifold meshes and the meshes 

with interpenetrating parts, the test models we adopted 

in the experiments are either non-manifold or those 

with interpenetrations. Most of them are downloaded 

from the websites of the Aim@Shape and the Stanford 

3D Scanning Repository. An example of such model 

has been given in Fig. 1, namely, the Al Capone mesh, 

comprising 21 inter-penetrating components. 
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To outline the differences between our 

approach and the traditional slice-based method, Fig. 

6 shows the result derived from Fang and Chen’s 

method[5]. 

  

  

Figure 6: Upper row: the voxelization results by 

Fang and Chen’s method[5]; lower row: 

the voxelization results by our method. 

 

According to the results shown in Figure 6, the 

rendered image shows that a number of holes can be 

found at the interpenetrating areas. Furthermore, 

according to the sliced-view of the distance map, some 

parts of the voxel sets are discontinuous, which 

implies the presence of unwanted cracks. These 

problems are caused by the duplicated boundaries 

formed in the inter-penetrating regions in incomplete 

boundaries and holes. Such error-prone dataset may 

cause the follow-up applications such as the skeleton 

extraction deriving incorrect results. With our 

adaptive method, the result presented in Fig. 6 has no 

such problems. 

 

To provide more empirical evidences, a number 

of additional test results on non-manifold meshes and 

those with interpenetrations are presented in Fig. 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: The results obtained from our adaptive 

voxelization method for the Hand, 

Bunny, Dinopet, and Teapot meshes: left, 

the input mesh; middle, the voxel set; 

right, a sliced-view with coloured 

distance map. 

 

The continuity of resulting volume data can be 

observed from a sliced-view of the coloured distance 

map along Z-axis presented in the right most column 

of Fig. 7; in which, the variation in colours of the 

image corresponds with the distance to the surface. 

For the non-manifold meshes, the Hand and Bunny, 

the final volume data are closed, continuous, and have 

no unwanted holes. For meshes comprising many 

interpenetrating subparts, i.e., the Dinopet and Teapot, 

the voxel sets are continuous and contain no unwanted 

holes. The numeric data from the experiments on the 
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meshes with interpenetrations are listed in Table 1. 

Since most of the calculations are performed by CPU, 

the execution times are relatively longer than those 

implemented on GPUs. 

 

Table 1: The results of the meshes with 

interpenetrating parts 

 

 

 

According to the results presented in Table 1, 

we may find that the total execution time is adversely 

influenced by the number of sub-parts, that means 

that a longer execution time is required by a model 

with more sub-parts. 

6. Conclusions 

In this paper we proposed a robust solid 

voxelization approach to a wild range of inputs 

including manifold, non-manifold meshes, and those 

with interpenetrations without using model repair and 

user intervention. According to the experimental 

results, the new method is capable of deriving robust 

continuous volume data of complete boundaries with 

no erroneous and redundant voxels, which is useful 

for a number of further applications such as the 

collision detection and skeleton extraction.  

Furthermore, it is possible to use an alternative 

algorithm for voxelization. Provided that the 

efficiency is prominent, acceleration by parallel 

computing on GPU can be put into practice using 

GPU-based voxelization methods. Despite that our 

method is capable of processing meshes with cracks 

and interpenetrations for meshes with very thin shells 

or tinny features, the sampling resolution still has 

great impact on the correctness of voxelization. 
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