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Abstract 

In this paper, a motor-imagery 

electroencephalography recognition system is 

proposed on single-trial motor imagery (MI) data. 

The main purpose of this paper is to analyze the 

visualized left- and right-hand behavior when 

single-trial EEG signals are offline in a 

brain-computer interface application. The frequency 

band of EEG variations in Channels C3 and C4 of the 

research subjects is filtered using a Butterworth filter, 

and a filtered band is used to extract the average 

energy of the two channels and construct 2D feature 

vectors. This facilitated the identification and 

classification of left- and right-hand behavior using 

unsupervised fuzzy Hopfield neural network (FHNN) 

clustering. Compared with LDA and SVM from 

experimental results, FHNN clustering provides a 

potential for BCI application. 

Keywords: single-trial motor imagery (MI), 

electroencephalography (EEG), Butterworth filter, 
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1. Introduction 

The brain–computer interface (BCI) is a 

communication system that provides an alternative 

channel for directly transmitting messages from the 

human brain to computers by analyzing the brain’s 

mental activities [1–3]. BCI systems based on the 

single-trial analysis of electroencephalographic (EEG) 

signals associated with imagined finger movements 

(motor imagery; MI) have grown rapidly in the last 

decade [2]. 

As early as 1875, British physiologist Richard 

Carton measured weak brain signals by attaching 

electrodes to the scalp of monkeys and rabbits. He 

also discovered and clearly identified evoked 

potentials, and the voltage changes that occur in the 

brain, sensory organs, and neural pathways, 

facilitating the brain to respond to external stimuli 

[4]. 

 

 

 

 

 

 

Since the recording of human brain 

electroencephalograms (EEGs) by German 

psychiatrist Hans Berger in 1929, EEG research and 

application have achieved the following 

developments: (a) the origins of EEG signals (the 

basis of neurophysiology and cell biology); (b) EEG 

applications for clinical diagnosis and treatment; and 

(c) brain neuron cognition and brain interface 

applications. Dedicating several years to extensive 

research, Berger was the first to publish records of 

human EEG. Since then, EEG has been applied to the 

medical field. In this paper, only EEG signals of 

specific frequencies are used. 

Supervised classifiers are usually applied to 

recognize MI EEG data in most BCI systems, such as 

linear discriminant analysis (LDA) [5] ，which is 

quite popular and is generally used to classify what 

need to be discriminated. The fuzzy Hopfield neural 

network (FHNN) clustering is an unsupervised 

approach that partitions a collection of feature vectors 

into a number of subgroups based on minimizing the 

trace of a within-cluster scatter matrix. EEG data are 

non-stationary and their characteristics vary with time; 

therefore, the classification of MI EEG data with an 

unsupervised FHNN clustering may lead to a better 

classification accuracy than others that can be 

obtained with conventional supervised classifiers.  

To assess the performance of FHNN clustering, 

we use some classifiers, such as LDA, and SVM, to 

classify the single-trial MI data, and the experiments 

also show that there is great potential for the use of 

unsupervised FHNN in EEG data classification. 

This paper is organized as follows: In Section 

II, Background description is presented; Data 

collection and experiment procedures are presented in 

Section III; Classification and Recognition of the 

Time-Domain Features of Imaginary Movements are 

presented in Section IV; Results and discussions are 

presented in Section V. Finally, conclusions are given 

in Section VI. 
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2. Background Description 

EEG signals reflect the electrical activity of 

100 billion neurons in the brain and are the bridge 

between neurons that trigger the transmission of 

adjacent neurons. On average, a neuron has 5,000 

synapses. Because the electrical activity of one 

neuron is extremely minute, a modern EEG can only 

measure the electrical activity of a cluster of neuron 

[6]. 

EEG is the representation of electrical activity 

and contains four frequency bands depending on the 

wave number per unit of time. In 1908, EEG was 

used to recognize the   wave for the first time; 

subsequently, various types of EEG have been 

described to correspond to different mental states. 

Under normal circumstances, human brains exhibit a 

combination of several frequencies at any given time. 

One of these frequencies dominates the main EEG 

depending on the subject’s state of consciousness. 

Researchers endeavor to observe the EEG 

activity and mental state that allow people to 

consciously control their thoughts and orient EEG 

into an ideal state. 

A conscious person may exhibit different EEG 

frequencies in various mental states. For example, a 

person that prepares to exercise shows weakened 

signal power at certain rhythms or frequencies. 

Figure 1 shows the four ranges of the EEG spectrum 

[7]. 

 

 
Figure 1: Basic background waves 

 

 waves typically occur when a conscious 

person is at rest or closing his eyes. The highest 

amplitude of  waves (30–50 u V) is observed in 

the postcentral gyrus and occipital lobe. 

  waves, also known as fast waves, are higher 

than 13 Hz in frequency, and possess an amplitude 

lower than 20 u V, which can be found in the 

postcentral gyrus, occipital lobe, and frontal lobe. 

Generally, u waves are mixed with  waves, and 

the extent to which differs from person to person. 

When people are in a stimulated state, such as their 

eyes being open or experiencing pain or tension, 
waves are suppressed, and β waves increase. 

 and  waves are also known as slow waves; 

 waves exhibit a frequency of approximately 3 Hz, 

and    waves range between 4 and 7 Hz. Slow 

waves generate comparatively higher amplitudes of 

up to hundreds of millivolts. These waves are 

commonly observed in the brains of children that are 

awake and adults that are sleeping.  

 

2.1 Event-related Potential 
Traditionally, an EEG is compiled by collecting 

EEG signals without stimulating the subject. Another 

method is to observe EEG variations after stimulating 

the subject. The latter method is employed to analyze 

specific related events and filter redundant noises for 

convenient observation using evoked potential or 

event-related potential (ERP). ERPs induce the 

time-locked variations of activated neurons. This 

technology has recently attracted increasing attention. 

ERP technology enables researchers to use a 

raw EEG to record electrical activities in the brain 

and investigate the human cognition. For this purpose, 

subjects are instructed to perform predetermined 

missions that trigger the feedback of intended 

cognition (e.g., attaining goals of a certain type); 

subsequently, the EEGs of the subjects are recorded. 

Therefore, ERP is the potential variation in human 

responses to internal or external events. 

A raw EEG records all electrical activities of a 

subject’s brain at a given time (Figure 2). To extract 

messages of interest, time-locked and average signals 

must be identified by marking the time of stimuli and 

averaging the results of numerous experiments 

(Figure 3) [8]. 

 

 
Figure 2: The sum of all electrical activity in the 

brain and the raw EEG signals of a 

subject during a specific period 

 

 
Figure 3: The averaged waveform of stimuli 

before 100 ms 
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This averaging procedure involves filtering 

stimuli unrelated to brain activities. Random 

variations are averaged, and sufficient experiments 

are conducted to isolate visual stimuli related to 

electrophysiological activities using ERP waveforms. 

The peak values of most waveforms are then linked 

to specific cognitive mechanisms. Because of the 

electrophysiological phenomenon, ERP shows a 

superior temporal resolution, but, comparatively, a 

smaller spatial resolution. Thus, ERP is a key tool for 

understanding cognitive procedures. 

In 1977 and 1992, Gert Pfurtscheller proposed 

two phenomena, namely event-related 

desynchronization (ERD) and event-related 

synchronization (ERS). These phenomena were 

introduced to explain the potential electrical 

differences of an EEG, which are caused by internal 

or external stimuli. ERD reflects the energy 

suppression in the EEG that results from 

unsynchronized neurons. ERS reflects the energy 

increase caused by synchronized neurons [9]. 

 

2.2 Event-related Desynchronization and 

Event-related Synchronization  
ERD is the amplitude attenuation of EEG alpha 

rhythms that occur in related events. Closely related 

to cerebral cortex activation and consciousness, ERD 

is associated not only with the electrophysiological 

procedures of cerebral cortex activation and 

stimulation, but also with sensory messages in the 

cerebral cortex and the characteristics of motor 

command execution. ERD has been studied using 

visual and audio stimuli, such as random motion, 

cognition, and attention missions. Numerous studies 

have adopted visual stimuli for experiments. In 

addition, ERD can reflect the difference in relative 

sensitivity during the process of memorization. 

Furthermore, ERD alpha waves show significant 

differences between the lower frequency band (8–10 

Hz) and the higher frequency band (10–12 Hz). The 

components of these two alpha bands may reveal 

different cognitive processes. 

Research has found that ERD alpha waves of 

the lower frequency (8–10 Hz) signify processes of 

attention and activation. The higher frequency band 

of ERD alpha waves (10–12 Hz) is related to more 

stimulating events. The counterpart mechanism of the 

ERD is the ERS, which can be observed when the 

alpha activity increases in particular stages or regions. 

ERS indicates whether the cerebral cortex is at rest or 

idle. ERS results represented by ERD mapping 

patterns can be used to investigate the time and phase 

of cortex activation models. 

The ERD brain mapping technique can be used 

to illustrate abstract regions where the brain activity 

occurs with a higher temporal resolution. This feature 

is the reason why ERD is particularly appropriate for 

investigating cognitive processes. Because of the 

thriving development of computer technology, the 

ERP technique combined with audio stimuli has 

become a core element of experiments regarding 

human psychology and physiology. However, several 

studies have contended that ERD is not stable and not 

totally independent in the EEG. Recently, Klimesch 

suggested that ERD synchronous oscillations results 

from transiently phase-locked events or stimuli [10]. 

Synchronizing the frequency of the theta 

rhythm produces ERP because the frequency of the 

alpha rhythm is typically not synchronized with 

mission demands. Therefore, ERD alpha frequencies 

provide functional messages of various cortices for 

the ERP technique. This implies that ERD and ERS 

techniques can be adopted to identify ERPs that 

cannot be found by measuring event-related brain 

activities. 

Additionally, with most BCI applications, ERD 

and ERS can be triggered by visualized motions 

rather than real motions. Therefore, since 1980, 

several BCIs based on  /  have been developed 

[11]. 

3. Data Collection and Experiment 

Procedures 

The brain wave data used in this study are 

derived through off-line data analysis. The data 

source is the public information provided by a 

graduate institute of biomedical engineering at Graz 

University of Technology, Austria that was provided 

for the 2003 BCI Competition II [12]. The participant 

recorded in this data was a healthy 25 year-old 

female. The participant was placed in a comfortable 

armchair. Next, the corresponding hand movements 

that control the movement (to the left or right) of the 

image on the feedback column were shown to the 

participant. The prompts for moving the image to the 

left or right were randomly assigned. 
The experiment conducted in this study involved 

7 procedures comprising 40 tests (Figure 4). Each 

procedure was completed in one day. Intervals of 
several minutes were provided between tests. A total of 

280 samples (140 from each class) were employed. Each 
test lasted for 9 s: The first two seconds were 

motionlessly followed by an audio stimulating 

instruction that indicated the start of the test. The trigger 
channel (#4) was switched from low to high, and the 

plus sign appeared for a second. At the 3rd second, an 

arrow pointing to either left or right appeared. Feedback 
was provided through Channels 1 (C3) and 3 (C4) (Fig. 

5). The AAR parameters were integrated with 
discriminant analysis of the output parameters. The 

classification results obtained were provided to the 

participants as the feedback signals. EEG signals were 
measured using G-tec amplifiers and Ag/AgCl adhesive 

electrodes. Three pairs of electrodes were placed at three 
EEG channels (C3, Cz, and C4). Pads with the plus sign 

were attached at the front, and those with a minus sign 

were attached at the back. 
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Figure 4: Experiment flowchart 

 
Figure 5: Electrode distribution 

4. Recognition of the       

Time-domain Features of 

Imaginary Movements 

4.1 Butterworth Filter 

Butterworth filters were adopted to process 

EEG signals; these filters were bandpass filters with 

specific mu and beta wave frequencies. The central 

frequencies of the bandpass constant Q of the 

Butterworth filters were 6, 6.9, 7.8, 9, 10.2, 11.7, 13.4, 

15.3, 17.5, 20.0, 22.8, 26.1, 29.8, and 33.5 Hz. 

A set of 4th order Butterworth bandpass filters 

was constructed; these filters shared the same central 

frequencies for constant Q. The rule determining how 

these filters overlapped with adjacent filters was 

established based on the standard central frequency, 

which was the point next to the start frequency [13]. 

The Butterworth bandpass filters used in this 

paper had a 128 Hz sampling frequency. When the 

sampling frequency reaches the desired frequency (8–

30 Hz, that is, the frequency band of mu and beta 

waves), the desired frequency can subsequently be 

extracted, as shown in Figs. 6 and 7. 

 

4.2 Time-domain Feature 

The EEG amplitude in the motor cortex 

decreased significantly when visualized actions were 

performed in response to the task signs. The ratio of 

the sum of C3 amplitudes to that of C4 amplitudes 

was regarded as the time-domain feature; thus, the 

most distinct ERD feature in the time domain was 

identified. 

The results of the experiment conducted in this 

paper indicated that if time was segmented into 

durations of 1.5 s for the sequential analysis, the 

segment of 4–5.5 s provided satisfactory results. 

According to the Figures 8 ~ 11, after noise 

was filtered, the signal amplitude stabilized, and the 

time-domain feature of ERD was more distinct. 

 

Figure 6: Frequency response curve 

 

 

Figure 7: The amplitude of filtered raw signals 
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Figure 8: The raw EEG for left-hand visualized 

motions 

 

 
Figure 9: The raw EEG for right-hand visualized 

motions 

 

 

Figure 10: The EEG for left-hand visualized 

motions after noise was filtered using 

a Butterworth filter 

 

 
Figure 11: The EEG for right-hand visualized 

motions after noise was filtered using 

a Butterworth filter 

 

4.3 Feature Extraction 

Let tf be the time-variant function of EEG 

amplitudes. The energy of the C3 and C4 channels in 

each test can be obtained using the time-domain 

energy calculation method. 

 
2

33 )( t
q
CC tfE  (1) 

  

2

44 )( t
q
CC tfE

 
(2) 

  

During the task of visualized left-hand motions, 

Channel C3 (the cerebral sensorimotor region 

corresponding to the left hand) exhibited an energy 

increase, which matched the ERS characteristics. 

Channel C4 (the cerebral sensorimotor region 

corresponding to the right hand) exhibited an energy 

decrease, which matched the ERD characteristics. 

ERS and ERD were also observed during the task of 

visualized right-hand motions.  

The feature of the i th test was obtained using 

 

    i
C

i
C

t EmeanEmeanf 43 ,  (3) 

  

The feature matrices of both the training data 

and test data were 2140 . 

 

4.4 Fuzzy Hopfield Neural Network 

Clustering Techniques 
Clustering is a process for classifying training 

samples in such a way that samples within a cluster 

are more similar to each other than samples 

belonging to different clusters. Similarity measures 

employed to classify samples depend on the object 

characteristics e.g. distance, vector, entropy, etc. 

Many clustering approaches have also been 

demonstrated such as the hard clustering algorithm 

[14-15] and the soft (fuzzy) clustering algorithm. 
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Each of them has its own special characteristics. 

There have been many applications based on 

clustering strategy; some of these applications 

designed by authors include image segmentation [16] 

and fuzzy vector quantization algorithms [17]. The 

fuzzy clustering method assigns the sample with a 

number, m, between zero and one described as a 

membership function. In this paper, the fuzzy 

clustering method is to classify the feature vectors 

extracted from the original EEG data, and to 

recognize complicated brain mental tasks, such as left 

and right motor imageries. 

The FCM clustering algorithm was first 

introduced by Dunn [18], and the related 

formulations and algorithms were extended by 

Bezdek [19]. Another strategy for fuzzy clustering, 

called the penalized fuzzy c-means (PFCM) 

algorithm, with the addition of a penalty term was 

proposed by Yang [20-21]. It is a generalized FCM 

algorithm and was shown by Yang that the PFCM 

algorithm is more meaningful and effective than the 

FCM. The Hopfield neural network with a simple 

architecture and parallel potential has been applied in 

many fields [17, 22-23]. By using Eqs. (4) and (5), 
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the FHNN can classify training samples into c 

classes in a parallel manner that is described as 

follows: 

 

FHNN Clustering Algorithm 

 

Step 1. Input a set of training samples 

 nxxxX ,...,, 21 , constant v )0( v , 

fuzzification parameter m  m1 , 

the number of class c , and initialize the 

states for all neurons ][ , jiuU   

(membership matrix). 

Step 2. Compute j  and weighted matrix using Eqs. 
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Step 3. Calculate the input to each neuron  ji,  by 

Eq. (4) . 

Step 4. Apply Eq. (5) to update the neurons’ 

membership values in a synchronous 

manner. 

Step 5. Compute     tt UU  1max . If   

go to step 2, otherwise go to Step 6. 

Step 6. Find the cluster for the final membership 

matrix. 

5. Results and Discussions 

This paper experimented on two sets of 

extracted features. Feature 1: The time domain was 

set as the feature vector and then classified using the 

LDA. Feature 2: ERD energy variations were 

classified using the FHNN. After these two features 

were extracted, the results were compared with the 

features extracted using the FHNN, and SVM. 

Figs. 12 to 14 show the feature recognition 

results obtained using different classifiers. Both the 

LDA and SVM were supervised learning linear 

classifiers that can directly distinguish between the 

left and right hands. In addition, the FHNN adopted 

in this paper as an unsupervised algorithm did not 

require any training before the events to recognize 

left- and right-hand visualized motions. According to 

Figure 14, the FHNN only classified the results into 

two groups. 

According to Feature 2 and Figure 15, during 

left-hand motion tasks, Channel C2 exhibited 

increased energy amplitudes corresponding to ERS 

characteristics, whereas channel C4 exhibited 

reduced energy amplitudes corresponding to ERD 

characteristics. Similarly, ERD and ERS were also 

observed during right-hand tasks (Fig. 16). 

Figure 17 shows the 2 feature recognition 

results obtained using FHNN classifiers. Table 1 

shows the recognition results for the two features. 

Both feature vectors performed two classification 

activities, that is, “determining whether the 

right-hand fingers moved” and “determining whether 

the left-hand fingers moved”. 

Furthermore, because the participants began 

their visualized motion tasks on the 3rd second, this 

paper observed information of the offline events 

during the analysis of time segment selection. 

Classification performance were compared 

with that of the LDA. For segments 3s-9s, 3s-8s, 

3s-7s, 3s-6s, and 3s-5s, the accuracy declined after 

3s-9s, 3s-8s, and 3s-7s. Accordingly, this paper 

analyzed other time segments and found that 4s-6.5s 

was the segment that resulted in the greatest accuracy 

when using the SVM. 

Although the FHNN demonstrated high 

recognition rates when classifying a specific period 

of time (3s-9s and 3.5s-9s), its performance in other 

time segments was lower than the LDA and SVM. 
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Therefore, based on practicality, the FHNN can be 

adopted for online classification because its 

recognition rates for periods of time are satisfactory. 

Additionally, the first 0.5s in the 3.5s-9s segment was 

the preparation time for the experiment participants. 

 

 
Figure 12: Classification result of the LDA 

 

 
Figure 13: Classification result of the SVM 

 

 
Figure 14: Classification result of the FHNN 

 

 
Figure 15: Variations in the energy amplitude of 

C3 and C4 during visualized left-hand 

motion tasks 

 

 
Figure 16: Variations in the energy amplitude of 

C3 and C4 during visualized 

right-hand motion tasks 
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Figure 17: the recognition results for the two 

features 

 

Table 1: Accuracy of time segment selection using 

various classifiers  
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6. Conclusion 

The objective of this paper was to increase the 

recognition rate of EEG applications based on BCIs. 

This paper extracted information of interest from the 

frequency and time domains before identifying and 

classifying the data. The desired frequencies were 

extracted using Butterworth filters for subsequent 

feature extraction, classification, and recognition. 

However, the EEG signals observed during 

performing the visualized tasks were generally 

weaker than those observed during performing the 

real motion tasks. In addition, the signals of interest 

were often hidden in continuous and irregular signals 

and noises. To resolve these issues, this paper 

performed several procedures to extract the desired 

features. Time-domain features were adopted for 

feature extraction. The methods of time segment 

selection were also classified. Based on the 

procedures of time segment selection, activity 

segment locations were specified, so classification 

accuracy was increased. Finally, the experimental 

results show that FHNN clustering is a promising 

approach showing splendid potential applications in 

BCI work. 
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