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Abstract 

In this thesis, we used the EEG signals of 

motor imagery (MI) to identify different imagery 

activities. The Emotiv EPOC was used to extract 

electroencephalogram (EEG) signals. Basically, the 

Emotiv EPOC can recognize several signals such as 

facial expressions, emotional metrics, and mental 

Commands. In the Emotiv EPOC, we used AF3, AF4, 

FC5 and FC6 to capture EEG signals. There are four 

voluntary actions i.e. no imaging, imagining tongue 

movement, imagining right hand movement, and 

imagining left hand to be recognized. Firstly, the 

received EEG signals from Emotiv EPOC were 

transmitted to computer by using wireless manner. 

Secondly, feature vector of EEG could be transferred 

by a Wavelet transform. And the four classified 

actions could be analyzed through SVM algorithm 

with the Gauss kernel function. Finally, the 

experimental results showed that high recognition 

rate can be obtained to identify the mental activities 

of motor imagery through the proposed Brain–

Computer Interface (BCI) system. 

Keyword: Electroencephalography (EEG), Brain–

computer interface (BCI), Wavelet, Motor imagery 

(MI), Support vector machine (SVM) 

1. Introduction 

BCI systems provide one of the most important 

aspects, which is an alternative way of 

communication through brain signals. There are 

many applications of BCI in several fields [1-3]. One 

of those is to provide assistive devices for patients 

who are unable to perform physical movements. It is 

the primary aim of the BCI researchers to determine 

the right intention from the brain activities and reflect 

them into the desired movement accordingly [4, 5]. 

This particular area in BCI is known as Motor 

Imagery (MI) movement [6, 7]. Motor imagery refers 

to visualization of a limbic activity, or any other 

movement, without the actual execution of the 

motion imagined. It leads to various changes in the 

 

 

 

 

 

connectivity between the neurons present in the 

cortex. This results in either an event related 

desynchronization or event-related synchronization of 

mu rhythms. These effects are due to the changes in 

the chemical synapses of the neurons, the change in 

strength between the interconnections or the change 

of intrinsic membrane properties of local neurons. 

In the research field of motor imagery-based 

BCI, an extraction approach with transform-based 

feature for MI tasks classification was proposed by 

Baali et al. [8]. They used a signal-dependent 

orthogonal transform, referred to as linear prediction 

singular value decomposition (LP-SVD), for feature 

extraction. A logistic tree-based model classifier is 

used; the extracted features are classified into one of 

four motor imagery movements. In 2015, Tomida et 

al. [9] presented an active data selection method for 

MI EEG classification. In the selection method, 

rejecting or selecting data from multiple trials of EEG 

recordings is crucial. To aim at brain machine 

interfaces (BMIs), they proposed a sparsity-aware 

method to select data from a set of multiple EEG 

recordings during motor-imagery tasks. Jois et al. [10] 

compared several classification techniques for Motor 

Imagery-Based BCI in 2015. They indicated that 

common features, e.g., band power values, present 

that the single EEG trials can be extracted by suitable 

methods for classification using support vector 

machines (SVM), neural networks or ensemble 

classifiers. The classifiers yield different efficiencies 

and are compared to find the optimal technique for 

same number of features. They believedt the neural 

net techniques proved to be the most efficient. The 

symmetric positive-definite (SPD) covariance 

matrices of EEG signals carry important 

discriminative information proposed by Xie et al. [11] 

for MI BCI system in 2016. In 2016,  

Chatterjee and Bandyopadhyay [12] used SVM 

and Multi-layered Perceptron (MLP) for EEG based 

MI classification. They showed that both SVM and 

MLP were suitable for such MI classifications with 

the accuracy of 85% and 85.71%, respectively. 

Chatterjeel et al. [13] examined the quality of feature 

sets obtained from Wavelet-based Energy-entropy 

with variation of scale and wavelet type for MI 

classification in 2016. They have verified their study 

with three classifiers- Naive Bayes, Multi layered 

Perceptron and Support Vector Machine. In 2016, Wu 

et al. [14] used the fuzzy integral with particle swarm 

optimization (PSO), which can regulate 

subject-specific parameters for the assignment of 

optimal confidence levels for classifiers. 
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A well-established tool in studying the 

neural-function correlates of cognitive processes for 

providing human brains with much-needed insight 

which can be created by EEG signals. A 

well-organized EEG headset has several advantages 

such as real-time data acquisition, wireless manner 

with Bluetooth or Wi-Fi, fast data refresh rate and 

exchange, and so on. Additionally, it is a low-cost 

system in diagnosis and health management. An 

EEG-based BCI system requires uncomplicated 

mechanisms and less time utilization for short-time 

development with low-cost manner. A low-cost 

headset named Emotiv EPOC neuro [15] was used to 

extract EEG signals to recognize the actions of MI in 

this paper. There are 14 electrodes with 2 reference 

channels in Emotiv EPOC to reveal facial actions, 

cognitive states, and affective intensity extracted 

from different EEG signals in a real-time manner. 

There have been some applications that successfully 

utilize this technology in several fields. Thobbi et al. 

[16] achieved the remote presence using the Emotiv 

Epoc headset to control a humanoid robot. Szarfir 

and Signorile [17] used an Emotiv system to extract 

the EEG signals from the headset to categorize them 

into one of several groups; that group was then 

translated to a robotic command, and finally 

controlled the robot. Ramirez and Vamvakousis [18] 

used an Emotive Epoc device to detect emotion from 

EEG signals. They extracted features from the EEG 

signals in order to characterize states of mind in the 

arousal-valence 2D emotion model. Using these 

features, they classified EEG signals into high/low 

arousal and positive/negative valence emotional 

states. In 2013, Duvinage et al. [19] proposal a BCI 

system to discuss the performance of the Emotiv 

Epoc headset for P300-based applications.  

A wavelet is a mathematical transform model with a 

fast-decaying and finite-length oscillating waveform, 

which is used to divide a given function into different 

scale elements. The basic functions of wavelet 

transform (WT) [20] are small waves located in 

different times. WT generates a few significant 

coefficients around the discontinuity. In nonlinear 

approximation, a few significant coefficients of a 

signal are kept, and the rest are set to zero. WT 

produces a few significant coefficients for the signals 

with discontinuities to reconstruct the signal. Thus, 

better results for WT nonlinear approximation is 

obtained. WTs have several advantages over 

conventional Fourier transforms, as they can expose 

the nature of a function in the time and frequency 

domains simultaneously. In this paper, a wavelet 

transform is used to get the features from the 

captured EEG signals. 

Support vector machines (SVMs) [21] are a 

machine learning method with a supervised rule used 

for classification and regression. The kernel learning 

function is probably the most widely used SVM. It 

achieves relatively a robust pattern recognition 

performance using well-established concepts in 

optimization strategies. Classifying data has been one 

of the major tasks in machine learning. The idea of 

SVM is to create a hyper plane between data sets to 

indicate which class a training sample belongs to. 

The challenge is to train the machine to understand 

structures from data and mapping with the right class 

label, and, for the best result, the hyper plane has the 

largest distance to the nearest training samples of any 

class. In this paper, SVM is also used to classify the 

reduced EEG data from WT into one of the four 

clusters of mental states. 

This paper is organized as follows. The system 

architecture is introduced in Section 2. Section 3 

shows the algorithms in the proposed system. Section 

4 demonstrates the feature extraction and mental 

states prediction. Experimental results are displayed 

in Section 5, and finally, Section 6 is the conclusions. 

2. System Architecture 

The proposed EEG-based BCI system is shown 

as in Fig. 1. The architecture includes an EEG signal 

acquisition unit named as a nEmotive EPOC device 

with a 14-elctrode and 2-reference headset and a 

wireless communication interface to transmit EEG 

signals to a personal computer. The Emotiv EPOC 

headset, shown as in Fig. 2, is used to extract the 

EEG signals. It consists of 14-channel bio potential 

sensors with gold-plated electrodes to offer optimal 

positioning for an accurate spatial resolution. 

Additionally, CMS/DRL reference locations are also 

utilized. Based on the international 10-20 locations, 

these 14 EEG names are AF3, AF4, F7, F8, F3, F4, 

FC5, FC6, T7, T8, P7, P8, O1, and O2. In the Emotiv 

headset, the sampling rate is 128 Hz on the output, 

and the internal sampling rate is 2048 Hz with a 

1.95-Least Significant Bit (LSB) voltage resolution. 

In this paper, we used AF3, AF4, FC5 and FC6 to 

capture EEG signals. There are four voluntary actions 

i.e. no imaging, imagining tongue movement, 

imagining right hand movement, and imagining left 

hand to be recognized. The brain activities were 

recorded in real time and compared with mental 

states by a cheap off-the-shelf EEG headset. First, 

EEG signals are sequentially and off line extracted 

from a headset and transmitted to a personal 

computer with a wireless manner. Large number of 

feature vectors of EEG can be reduced by a Wavelet 

transformation. Then the reduced EEG signals can be 

classified into four clusters by means of a SVM 

algorithm with a Gaussian kernel function. 
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Figure 1: The proposed system diagram 

 

 
(a)          (b) 

 

Figure 2: (a) Emotiv Epoc; (b) Locations of 

Emotiv electrodes 

3. Algorithms in the Proposed 

System 

In the proposed system, there are two phases 

named training phase and recognition phase to create 

a feature space and recognize the suitable facial 

action. In these two phases, we use a wavelet 

transform to reduce the size of extracted EEG data 

and the SVM algorithm to classify the acquired EEG 

data into a reasonable cluster in the feature space. 

 

3.1 Wavelet Transformation 
In this study, Daubechies [22] wavelet was 

used to extract the features from EEG signals. The 

Daubechies wavelet was proposed by Dr. Daubechies 

in 1988. Daubechies wavelet, being a discrete 

wavelet analysis, is often used in signal compression, 

digital signal analysis and noise filtering and so on. In 

Daubechies wavelet, several series db wavelets can 

get better performance in signal analysis. In this 

paper we use db4 wavelets to extract main features 

from EEG signals. Multi-resolution analysis in the 

WT algorithm was proposed by Mallat [23] in 1989. 

When a signal has a high-degree variation in a proper 

area, the single-resolution WT is difficult to get 

detailed features while the multi-resolution strategy 

can decompose the lower layer signal to get more 

information. Therefore, the decomposed 

low-frequency signal can be decomposed 

continuously to display more features. However, the 

decomposed iterations of the signal is so many to 

make the number of samples so few that results in 

less obvious characteristics of the signal. Therefore, 

the number of signal decomposition layer is limited. 

In the wavelet decomposition, the original signal is 

input to a low-pass filter and a high-pass filter, 

respectively. The low-pass filter retains the 

consistency of the original signal, and the high-pass 

filter reserves the variability of the original data. The 

decomposition for the low- and high-pass frequencies 

are defined as: 

 

𝑦𝐿[𝑛] = ∑ 𝑥[2𝑛 − 𝑖]𝑔[𝑖]

𝐾−1

𝑖=0

 (1) 

  

𝑦𝐻[𝑛] = ∑ 𝑥[2𝑛 − 𝑖]ℎ[𝑖]

𝐾−1

𝑖=0
 

(2) 

  

 

where 𝑔[𝑖] and ℎ[𝑖] are the responses of low- and 

high-pass filters in layer i , respectively. In general, 

the features of a signal are contained in the 

high-frequency part. Therefore, Eq. (3) was used 

to calculate the energy distribution for 

high-frequency elements in WT,  which were 

regarded as principal features for training feature 

spaces. 
 

𝐸ℓ =
1

𝑁
∑ 𝑦𝐻[𝑘]2

𝑁

𝑘=1

 (3) 

 

where ℓ  is the electrode location while N 

indicates the number of samples. 
 

3.2 Support Vector Machine (SVM) 

A supervised learning model SVM is associated 

with learning algorithms to analyze data used for 

classification and regression analysis. In this paper, a 

subspace for EEG signals classification is produced 

by training a SVM classifier with the Gaussian kernel. 

A vector space is classified by training samples 

through a SVM system so that a clear and wide 

enough gap is obtained to divide training samples 

into separated clusters. The smallest distance between 

the decision boundaries is calculated to define margin 

or support vectors, and any of the samples are data 

points located on the margin line. In addition to 

perform linear classification, SVM can efficiently 

process a non-linear classification using the kernel 

trick, so their inputs are implicitly mapped into 

high-dimensional feature spaces. Many hyperplanes 

are used to classify the data. The largest margin 

between the two classes is selected as the best 

hyperplane. Therefore, the hyperplane is chosen so 

that the distance is maximized between it and the 

nearest data point on each side. It is named as the 
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maximum-margin hyperplane, and the linear 

classifier can be defined as a maximum margin 

classifier if such a hyperplane exists. 

Suppose class 𝑧𝑖 ∈ {−1, +1}  can be linearly 

classified from training samples  𝑥𝑖 . A hyper-plane 

𝑤 ∙ 𝑥𝑖 + 𝑏 = 0 can be determined by these training 

samples to make the distance from the support 

vectors separate margins maximum for each training 

sample 
 

𝑧𝑖(w ∙ 𝑥𝑖 + 𝑏) ≥ 1, 𝑖 = 1,2, ⋯ 𝑝 (4) 
 

When the distance from training sample to 

classification margin 1 ‖𝑤‖⁄  is maximum a 

maximum classification margin (separating 

hyper-plane) is obtained. The solution of the best 

separating hyper-plane is transformed into its dual 

problem by the Lagrange method. That is the 

maximal values calculated by the following function 

 

𝑚𝑎𝑥 {𝑤(𝛽) = ∑ 𝛽𝑖 −
1

2
∑ ∑ 𝛽𝑖𝛽𝑗𝑧𝑖𝑧𝑗(𝑥𝑖 ∙ 𝑦𝑗

𝑝

𝑗=1

𝑝

𝑖=1

𝑝

𝑖=1

} (5) 

 

s.t ∑ 𝛽𝑖𝑧𝑖 = 0, 0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1,2, ⋯ 𝑝
𝑝
𝑖=1  

 

where 𝛽𝑖 is the Lagrange multiplier corresponding 

to the i-th sample. The corresponding sample 𝑥𝑖 is 

called the support vector if 𝛽𝑖  is not equal to 0. 

Constant C (C > 0) is the penalty parameter for error 

classification. For a best value 𝛽𝑖
∗  and a suitable 

separating limit value 𝑏∗, the training sample x can 

be classified by the following decision function 
 

𝑓(𝑥) = 𝑠𝑔𝑛 [∑ 𝛽𝑖
∗

𝑝

𝑖=1

𝑧𝑖(𝑥𝑖 ∙ 𝑥) + 𝑏∗] (6) 

 

For the nonlinear classification, training samples are 

mapped into a higher dimensional linear feature 

space ℝ by a nonlinear function φ(∙) with a kernel 

function 𝐾𝑒𝑟(∙,∙). Then, the decision function can be 

defined as 
 

𝑓(𝑥) = 𝑠𝑔𝑛 [∑ 𝛽𝑖
∗

𝑝

𝑖=1

𝑧𝑖𝐾𝑒𝑟(𝑥𝑖 ∙ 𝑥) + 𝑏∗] (7) 

 

where kernel function 𝐾𝑒𝑟(𝑥𝑖 ∙ 𝑥) = 𝜑(𝑥𝑖) ∙ 𝜑(𝑥) is 

the inner product of feature vectors. The Gaussian 

kernel is widely adopted in kernel methods, so we 

focus on the parameter selection of the Gaussian 

kernel in this paper. The Gaussian kernel function is 

defined as: 
 

𝑘𝑒 𝑟(𝑥𝒊, 𝑥) = exp(‖𝒙𝒊 − 𝒙‖2 𝑠⁄ ) (8) 

 

where s is the parameter to be selected. 

4. Feature Extraction and Mental 

States Prediction 

There are two phases to recognize four mental 

states in the proposed system. They are training phase 

and recognition phase as shown in Fig. 3, 

respectively. We extracted EEG signals reacted by 

mental states such as no imaging, imagining tongue 

movement, imagining right hand movement, and 

imagining left hand movement from 4 locations AF3, 

AF4, FC5 and FC6 at the headset in training phase. A 

cheap off-the-shelf EEG headset-Emotic Epoc device 

is used to record the brain activity in real time, which 

then is translated to mental states. First, EEG signals 

are sequentially and in real time extracted from a 

headset, which is then transmitted to a personal 

computer through a wireless interface. A Wavelet is 

used to transform large number of feature vectors of 

EEG in order to reduce the size of signals. Then four 

clusters can be obtained through classifying the 

reduced EEG signals by means of a SVM algorithm 

with the Gaussian kernel function. The subject’s EEG 

signals are also extracted from the same four 

locations at the headset in recognition phase. And we 

obtain the energy distribution of EEG signals by a 

Wavelet transform. Then, the calculated energy 

distribution is compared with features in the feature 

space to select the closest one. 
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(a) 

 

 
(b) 

Figure 3: Two phases for recognizing the mental states from EEG, (a) Training Phase, and (b) Recognition 

Phase 

 

5. Experimental Results 

In this paper, six healthy subjects were 

separated into three groups to participate in 

experiments. For these six subjects, we extracted 

EEG signals from AF3, AF4, FC5 and FC6 locations 

to collect four mental states such as no imaging, 

imagining tongue movement, imagining right hand 

movement, and imagining left hand movement. In 

training phase, every subject wore a headset to image 

one of the four mental imaging actions each time, and 

the EEG was extracted 20 seconds to get 20 energy 

distributions. Every subject can get 80 energy 

distributions for four mental states. And every 

experiment was executed five times. Then the mental 

actions were recognized by the proposed system from 

the extracted EEG signals in line with recognition 

phase. The experiment is executed by comparing the 

energy distributions of two groups for every mental 

state with the feature vector of the other one on 

feature space. Therefore, we can get three comparison 

results as shown in Tables I, II, and III. In Table I, the 

accuracy rates for group 2 to recognize these four 

mental states form feature space of group 1 are over 

85%. Additionally, the lower accuracy rates are 75% 

in experiments 1 and 7, and 70% in experiments 9 

and 10 for imagining tongue movement in group 3 

when the group 1 worked as the training sample. In 

Table II, the group 2 was as the training sample, and 

the lowest accuracy rate to recognize group 1 is 75% 

for imagining right hand movement in experiment 4, 

while the accuracy rates for recognizing these four 

mental states are over 85% in group 3. In Table III, 

the group 3 was the training samples, and all of the 

lowest accuracy rates are 75% for imagining left hand 
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movement, imagining right hand movement, yet no 

imaging in experiments 3, 4, and 5 in group 1. The 

lowest accuracy rate is 75% for imagining left hand 

movement in experiment 7 in group 2. From the 

experimental results, we can find that group 2 as the 

training samples and group 3 as the test samples can 

obtain better results. 

 

 

Table I: Group 1 as the training sample as well as Group 2 and Group 3 as testing samples  

 G2-1 G2-2 G2-3 G2-4 G2-5 G2-6 G2-7 G2-8 G2-9 G2-10 

T 
20/20 

100% 

18/20 

90% 

18/20 

90% 

19/20 

95% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

17/20 

85% 

R 
20/20 

100% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

18/20 

90% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

L 
20/20 

100% 

20/20 

100% 

17/20 

85% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

N 
20/20 

100% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

19/20 

95% 

20/20 

100% 

 G3-1 G3-2 G3-3 G3-4 G3-5 G3-6 G3-7 G3-8 G3-9 G3-10 

T 
15/20 

75% 

18/20 

90% 

20/20 

100% 

19/20 

95% 

20/20 

100% 

20/20 

100% 

15/20 

75% 

20/20 

100% 

14/20 

70% 

14/20 

70% 

R 
20/20 

100% 

18/20 

90% 

20/20 

100% 

20/20 

95% 

18/20 

90% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

L 
20/20 

100% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

N 
19/20 

95% 

20/20 

100% 

19/20 

95% 

20/20 

100% 

20/20 

100% 

19/20 

95% 

20/20 

100% 

19/20 

95% 

18/20 

90% 

20/20 

100% 

*T : imagining tongue movement, R: imagining right hand movement, L: imagining left hand movement, N: no 

imaging. 

 

Table II: Group 2 as the training sample as well as Group 1 and Group 3 as testing samples 

 G1-1 G1-2 G21-3 G1-4 G1-5 G1-6 G1-7 G1-8 G1-9 G1-10 

T 
20/20 

100% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

R 
20/20 

100% 

20/20 

100% 

20/20 

100% 

15/20 

75% 

18/20 

90% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

19/20 

95% 

L 
20/20 

100% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

19/20 

95% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

N 
20/20 

100% 

20/20 

100% 

20/20 

100% 

19/20 

95% 

19/20 

95% 

17/20 

85% 

20/20 

100% 

20/20 

100% 

19/20 

95% 

20/20 

100% 

 G3-1 G3-2 G3-3 G3-4 G3-5 G3-6 G3-7 G3-8 G3-9 G3-0 

T 
20/20 

100% 

19/20 

95% 

20/20 

100% 

20/20 

100% 

19/20 

95% 

20/20 

100% 

19/20 

95% 

20/20 

100% 

19/20 

95% 

17/20 

85% 

R 
18/20 

90% 

19/20 

95% 

20/20 

100% 

20/20 

100% 

19/20 

95% 

18/20 

90% 

19/20 

95% 

18/20 

90% 

20/20 

100% 

20/20 

100% 

L 
20/20 

100% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

N 
19/20 

95% 

20/20 

100% 

19/20 

95% 

19/20 

95% 

20/20 

100% 

18/20 

90% 

19/20 

95% 

19/20 

95% 

18/20 

90% 

18/20 

90% 

*T : imagining tongue movement, R: imagining right hand movement, L: imagining left hand movement, N: no 

imaging. 

 

Table III: Group 3 as the training sample as well as Group 1 and Group 2 as testing samples 

 G1-1 G1-2 G21-3 G1-4 G1-5 G1-6 G1-7 G1-8 G1-9 G1-10 

T 
20/20 

100% 

20/20 

100% 

20/20 

100% 

19/20 

95%% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

R 
20/20 

100% 

20/20 

100% 

20/20 

100% 

15/20 

75% 

20/20 

100% 

20/20 

100% 

19/20 

95% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

L 
19/20 

95% 

20/20 

100% 

15/20 

75% 

20/20 

100% 

20/20 

100% 

19/20 

95% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

N 
20/20 

100% 

20/20 

100% 

20/20 

100% 

18/20 

90% 

15/20 

75% 

17/20 

85% 

20/20 

100% 

18/20 

90% 

20/20 

100% 

18/20 

90% 
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 G2-1 G2-2 G2-3 G2-4 G2-5 G2-6 G2-7 G2-8 G2-9 G2-10 

T 
20/20 

100% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

19/20 

95% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

19/20 

95% 

R 
20/20 

100% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

18/20 

90% 

19/20 

95% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

L 
20/20 

100% 

20/20 

100% 

17/20 

85% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

15/20 

75% 

19/20 

95% 

20/20 

100% 

19/20 

95% 

N 
18/20 

90% 

20/20 

100% 

19/20 

95% 

18/20 

90% 

20/20 

100% 

20/20 

100% 

20/20 

100% 

18/20 

90% 

18/20 

90% 

20/20 

100% 

*T : imagining tongue movement, R: imagining right hand movement, L: imagining left hand movement, N: no 

imaging. 

 

6. Conclusion 

In this paper, a wireless EEG-based BCI device 

was developed to extract EEG signals for recognizing 

the mental states with the motor imagery. The EEG 

signals were extracted from AF3, AF4, FC5 and FC6 

locations with WT to reduce signal size and SVM to 

classify these reduced signals into 4-set features 

which were indicated as four mental states such as 

imagining tongue movement, imagining right hand 

movement, imagining left hand movement, no 

imaging. Six subjects were divided into three groups 

for every experiment. The experiments were executed 

by using one group as training samples, and the other 

two were used as testing samples to recognize one of 

four mental states. Form the experimental results, the 

proposed system can obtaining suitable results have 

accuracy rates with motor imagery. 
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