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Abstract 

With the increasing number of use times, not 

only the performance of the lithium-ion battery 

decreases, but also the potential safety hazard 

increases. Through the prediction of the lithium-ion 

battery life, the lithium-ion battery can be controlled 

effectively according to the predicted results, so as to 

reduce the accident rate and improve the reliability of 

the lithium-ion battery in the application process. 

The method of a combining phase space 

reconstruction and support vector machine is used to 

predict the remaining life of lithium-ion battery. The 

noise of original test data was reduced by using 

wavelets. A part of the test data from the lithium-ion 

battery capacity is used to train and test the model. 
Here, the training and testing data for the 1060 

groups of data have been measured in the first 700 

groups, which accounted for 70% and 30%, 

respectively. The capacity of the lithium-ion battery 

was predicted by using the prediction model and the 

remaining 360 sets of data. The method of a phase 

space reconstruction support vector machine is used 

to predict the remaining life of lithium-ion battery. 

The relative error between the predicted value and the 

true value is about  3%, and not more than  5%. 

The result shows that the phase space reconstruction 

support vector machine model is suitable for the 

prediction of the remaining life of lithium-ion battery. 

Keywords: Wavelet, Support Vector Machine, Phase 

Space Reconstruction, Lithium-ion Battery, Life   

Prediction 

1. Introduction 

Because of its low cost, long service life, and 

high energy density, a lithium-ion battery has been 

more and more widely used [1-2].With the increase 

of use frequency, the performance of lithium-ion 

battery will decline, the battery failure leads to the 

recession of the battery, and the failure of the battery 

will cause great security risks, so the correct 

remaining life prediction of the lithium-ion battery is 

of great significance [3-5]. 

 

 

 

There are many methods to predict the life of a 

lithium-ion battery, such as the support vector 

machine algorithm, the neural network algorithm, the 

Grey Theory and other algorithms [6-7]. A method 

based on BP neural network was proposed to predict 

the remaining life of lithium-ion battery in reference 

[8], but the training time of BP neural network was 

slow; the final prediction accuracy was about 10%, so 

the prediction accuracy of this method was not high. 
Based on BP neural network optimizing by MIV 

algorithm, a method was proposed to predict the 

remaining life of lithium-ion battery in reference 

[9].The prediction accuracy was about  5%. This 

accuracy was greatly improved by using the MIV 

algorithm to optimize the BP neural network, but it 

did not solve the problem of long convergence speed 

of BP neural network training. The method based on 

LS-SVM was proposed to predict the life of 

lithium-ion battery in reference [10]. This method 

used genetic annealing algorithm to optimize the 

parameters, and then used the LS-SVM method to 

predict the life of a lithium-ion battery. This method 

has higher precision, but the algorithm is easy to fall 

into local optimal solution and the convergence rate 

is slow. The method based on QPSO-SVM was 

proposed to predict the life of lithium-ion batteries in 

reference [11]. This method usesd the quantum 

behaved particle swarm algorithm to optimize the 

SVM parameters, but the method did not solve the 

problem of a single input. A reliable method is 

proposed to predict the lifetime of lithium-ion battery, 

which is based on the method of a phase space 

reconstruction support vector machine, which is 

suitable for solving the problem of small samples, 

high dimensions and nonlinear regressions. Firstly, a 

wavelet is used to reduce the noise of the original test 

data to improve the prediction accuracy. A part of the 

test data of the lithium-ion battery capacity is then 

taken out to train and test the model. Here, the 

training and testing data for the 1060 groups of data 

have been measured in the first 700 groups, which 

accounted for 70% and 30%, respectively. The 

capacity of the lithium-ion battery is predicted by 

using the prediction model and the remaining 360 

sets of data. Finally, the relative error of the predicted 

value and the real value are drawn, and the prediction 

accuracy of the phase space reconstruction support 

vector machine is obtained. 
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2. Phase Space Reconstruction 

Support Vector Machine 

2.1 Phase Space Reconstruction 

The phase space reconstruction technique was 

first proposed by Packard and others. The technique 

of phase space reconstruction was to extend the value 

of one dimensional time series to the high 

dimensional phase space. The basic idea of phase 

space reconstruction is that each point of the high 

dimension phase space is not isolated but connected 

with each other [12-13]. For a given time series

1)}({ 


nnx , if the appropriate time delay parameter

 and the embedding dimension d are selected, the 

phase space reconstruction state vector is as follows. 
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If phase space dimension d is too small, phase 

space dimension can not reflect the real relationship 

within the data, and the phase space will overlap. 

Conversely, if the d is too large, the d will cause the 

gap between the data is too large, resulting in 

unnecessary noise, and the d cannot correctly reflect 

the true relationship within the data. The proper 

embedding dimension will shorten the calculation 

time, reduce calculation error, and shorten the 

prediction time. For large samples, the time delay 

parameter will not have a greater impact on the 

prediction. However, for small samples, the time 

delay parameter will have a greater impact on the 

prediction. If the time delay parameter is too large, 

a power signal distortion is produced by time series 

description, which will make the problem 

complicated. If the time delay parameter is too 

small, it will cause the correlation too strong, which 

will cause the hidden part of data information [14]. 

Therefore, the key of phase space reconstruction is to 

select the appropriate phase space dimension d and 

time delay parameter . In the real prediction process, 

the root mean square error (RMSE) is used to 

evaluate if the phase space dimension d and the time 

delay parameter are appropriate. The calculation 

formula is as follows. 
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2.2 Support Vector Machine (SVM) 

Support vector machine is developed on the basis 

of a statistical theory, which is mainly used to solve 

the regression problem of small samples, nonlinear 

and high dimensional spaces. The SVM uses a kernel 

function to map the input data to a high dimensional 

space, and solve nonlinear classification and 

regression problems in a high dimensional space 

[15-17]. Choosing the nonlinear kernel function and 

constructing the optimal nonlinear hyper plane are 

the key to the construction of SVM. 

 

2.2.1 Kernel Function Classification 
The kernel function of SVM must satisfy the 

Mercer theorem. The common kernel functions are 

linear kernel function, polynomial kernel function, 

RBF kernel function and S kernel function, among 

which the RBF kernel function is the most widely 

used. The RBF kernel function can be applied to 

large samples, small samples, high and low 

dimensions. The calculation formula of the RBF 

kernel function is as follows. 
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where  is called the kernel width. 

 

2.2.2 Optimal Classification Hyper Plane 

When the input sample is two-dimensional and 

linear, a straight line can be used to classify the input 

samples. When the input sample is not linear, an 

appropriate kernel function is selected; the input 

samples are mapped to a high dimension, and the 

original classification straight line is turned into a 

hyper plane. When the data is linear, the 

classification line is shown in Figure 1. 

 
Figure 1: The optimal linear classification 
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As shown in Figure 1, round and square 

represent a class of data, respectively, H is the best 

classification line. H1 and H2 are parallel to H1, and 

the distance between H1 and H2 is called the 

classification interval. The optimal classification line 

can not only separate the sample data, but also 

require the maximum classification interval between 

H1 and H2 [18-20]. The linear classification function 

is as follows. 

 

bxwxf )(  (4) 

 

The classification line is as follows. 

 

0 bxw  (5) 

 

The classification distance between H1 and H2 

is 
2

∥𝑤∥
, and the problem of finding maximal value of 

the classification interval is converted to find the 

minimum value of 
∥𝑤∥2

2
. 

3. Noise Reduction Processing of the   

Original Test Data of 

Lithium-ion Battery 

3.1 The test Data of a Lithium-ion Battery 

The lithium-ion battery with the positive 

electrode material which composes of nickel, cobalt 

and manganese materials is used as the experimental 

object. The NMC battery has the characteristics of 

large capacity and high discharge rate. By 

accelerating the aging of NMC battery, the service 

life of the battery is shortened, and the original test 

data is recorded in this experiment. When the battery 

capacity is reduced to 80% of the rated capacity, the 

battery becomes invalid. The rated capacity of NMC 

battery is 2.0Ah, and the failure capacity is 1.6Ah. 

The constant current discharge is used in the 

experiment. The capacity attenuation of the original 

test data of the 1060 groups of NMC battery is shown 

in Figure 2. 

 
Figure 2: The capacity attenuation of the original 

test data for Lithium-ion battery 

As shown in Figure 2, the real life of NMC 

battery is 1000 cycles. When the cycle time is more 

than 1000 times, the NMC battery becomes invalid. 

The capacity of NMC battery appears mutations in 

150 or about 560 times, which demonstrates that the 

influence of temperature change on NMC battery is 

great. 

 

3.2 The Noise Reduction Processing of the 

Original Test Data 
The data obtained during the experiment is the 

key of the whole experiment. If the data error is too 

much, it will affect the whole prediction result. In the 

course of the experiment, there are many factors that 

affect the original test data, such as the temperature 

difference, the change of discharge rate, the 

difference of the battery itself and so on. If these data 

are directly used to train and predict, it will directly 

affect the accuracy of prediction, and affect the data 

mining of the whole model. Therefore, before the 

training and prediction of the data, we need to reduce 

the noise signal of the original data and improve the 

training and prediction accuracy of the data. 

The wavelet denoising is one of the important 

research objects of the wavelet theory. The wavelet 

theory is also widely used in the identification and 

detection of signals, speech recognition, sample 

estimation, etc. [21]. 

If an original signal is )(nf , the original signal 

contains noise signal, )(ns , and then the noise 

model can be expressed as follows: 

 

)()()( nenfns 
 

(7) 

 

where   is the noise intensity, and )(ne is the 

noise signal. 

 The test data denoising process steps based on 

the wavelet theory are as follows: 

1) The 1060 sets of original test data (including 

noise signal) are decomposed. 

2) The original test data is decomposed by 

selecting a suitable wavelet basis function. 

3) The appropriate threshold is chosen to 

quantify the wavelet decomposition 

coefficient, and the general high frequency 

signal is considered as the noise signal. 

4) The signal is generated after denoising 

(wavelet reconstruction). 

The flow chart of wavelet denoising process is 

shown in Figure 3. 

 

 

 

Figure 3: The flow chart of wavelet denoising 

 

 

0 200 400 600 800 1000 1200
1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

Cycle times/times

D
is

ch
ar

ge
 c

ap
ac

ity
/A

h

28

http://fanyi.baidu.com/#zh/en/_blank
http://fanyi.baidu.com/#zh/en/_blank
http://fanyi.baidu.com/#zh/en/_blank
http://fanyi.baidu.com/#zh/en/_blank


International Journal of Computer, Consumer and Control (IJ3C), Vol. 5, No.4 (2016) 

 

The result of denoising is directly affected by 

the selection of a wavelet basis function, layer 

number n and the selection of threshold function. 

 

3.2.1 The selection of wavelet basis functions 

Commonly used wavelet basis functions are 

Haar wavelet, DbN wavelet, Sym.N wavelet, Hat 

Mexican (mexh) wavelet, Morlet wavelet, Meyer 

wavelet and so on[22-23]. The most commonly used 

wavelet bases are DbN wavelet and Sym.N wavelet. 

 

3.2.2 The selection of threshold functions 

When the threshold function is determined, we 

can use the hard or soft value function to deal with 

the threshold value. The hard function formula is as 

follows: 
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where S is the wavelet transform coefficient after 

denoising, x is the wavelet transform coefficient 

before denoising, and T is the critical threshold. 

In the hard value function, when the wavelet 

coefficient x is less than or equal to the threshold 

value T, the wavelet coefficient S is 0. When the 

wavelet coefficient x is larger than the threshold 

value T, the wavelet coefficient S is equal to the 

absolute value of the wavelet coefficient x before 

denoising. 

The soft value function formula is as follows: 
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In the soft value function, when the wavelet 

coefficient x is less than or equal to the threshold 

value T, the wavelet coefficient S is 0. When the 

wavelet coefficient x is larger than the threshold T, 

the wavelet coefficient S is equal to

))(( Txxsign  . 

 

3.2.3 The wavelet denoising evaluation index 

The wavelet denoising is usually evaluated by 

the signal-to-noise ratio SNR and root mean square 

error RMSE [24]. 

The root mean square error RMSE calculation 

is as follows: 
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The signal-to-noise ratio SNR calculation is as 

follows: 

 

)/lg(*10 0ppSNR s  (10) 

 

where 
n

is xfp 2)( 2

0 RMSEp 
. 

In the formula, the root mean square error is 

bigger, and the signal-to-noise ratio is smaller. The 

wavelet denoising evaluation standard is that RMSE 

is smaller, and denoising effect is better [25]. 

The NMC battery data is denoised by wavelets, 

the wavelet basis function uses Haar wavelet, and the 

original test data is decomposed into three layers; and 

the threshold estimation uses Heuristic. The root 

mean square error and signal-to-noise ratio of the 

data after denoising are RMSE=0.0024, 

SNR=57.2051,respectively. The relative error 

between the data after denoising and the original test 

data is shown in Figure 4. 

 
Figure 4: The relative error between the data after 

denoising and the original test data 

based on the Haar wavelet 

 

The basis function uses Sym.5 wavelet, and the 

original test data is decomposed into three layers; and 

the threshold estimation uses Heuristic. The root 

mean square error and signal-to-noise ratio of the 

data after denoising are RMSE=0.0011, 

SNR=63.7723, respectively. The relative error 

between the data after denoising and the original test 

data is shown in Figure 5. 
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Figure 5: The relative error between the data after 

denoising and the original test data based 

on the Sym.5 wavelet 
 

The basis function uses Db5 wavelet, and the 

original test data is decomposed into three layers; and 

the threshold estimation uses Heuristic. The root 

mean square error and signal-to-noise ratio of the 

data after denoising are RMSE=0.0017, 

SNR=60.2275, respectively. The relative error 

between the data after denoising and the original test 

data is shown in Figure 6. 

 

 
Figure 6: The relative error between the data after 

denoising and the original test data 

based on the Db5 wavelet 

 

Table 1: The RMSE and SNR values of the 

denoising data based on three kinds of 

wavelet basis functions 

 

 

The different wavelet basis functions are used 

to get the different values of RMSE and SNR after 

denoising, as shown in Table 1. 

As shown in table 1, the Harr wavelet gets 

RMSE=0.0024 and SNR=57.2051. The Sym.5 

wavelet gets RMSE=0.0011 and SNR=63.7723; The 

Db5 wavelet gets RMSE=0.0017 and SNR=60.2275. 

Due to the smaller RMSE or the greater SNR, the 

noise reduction effect is better. By contrast, the 

original test data is processed by the wavelet basis 

function Sym.5.The original test data was denoised 

by Sym.5 wavelet. The capacity fading of a 

Lithium-ion battery is shown in Figure 7. The 

average relative error between the data after 

denoising and the original test data is shown in Table 

2. 

 
Figure 7: The capacity attenuation of lithium-ion 

battery after denoising 

 

Table 2 The average relative error between the 

data after denoising and the original test 

data 
Cycle 

times / 

times 

1-200 201-400 401-600 601-800 801-1000 

Average 

relative 

error /% 

3.5951 3.4685 3.4008 3.3413 3.1962 

 

As shown in figure 7, the outburst points in the 

cycle times of 150 times and 560 times still exist, 

which shows that the test data after denoising 

maintains the characteristics of the original data. 

4. Lithium-ion Battery Life 

Prediction Based on a Phase 

Space Reconstruction Support 

Vector Machine 

The data processing procedure for the life 

prediction of Lithium-ion battery is as follows: 

1) The original test data of Lithium-ion 

battery is denoised by wavelets to 

eliminate the influence of temperature and 

discharge rate change. 

2) The training data is reconstructed by a 

phase space to set the phase space 

dimension d=5 and the time delay 

parameter =1. 

3) The Mapminmax function in MATLAB is 

used to normalize the data into the [0, 1] 

range, in order to remove the influence of 

the data dimension. 

4) The support vector machine (SVM) model 

is created to set the SVM parameters, here 

to make c=1, g=0.1. 
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5) A part of the test data from the lithium-ion 

battery capacity is used to train and test the 

model. Here, the training and testing data 

for the 1060 groups of data have been 

measured in the first 700 groups, which 

accounted for 70% and 30% respectively. 

6) The capacity of the lithium-ion battery is 

predicted by the prediction model and the 

remaining 360 sets of data. 

The flow chart of data processing method is 

shown in Figure 8. The predicted result is shown in 

Figure 9. 

 

 

Phase space reconstruction of training data 

Figure 8: The flow chart of data processing 

method in the life 

 

 
Figure 9: The results of life prediction for 

Lithium-ion Battery 

 

As shown in Figure 9, the red line indicates the 

true value, and the blue line indicates the predictive 

value. The fitting degree of the true value and the 

predictive value is very high before 150 cycles. With 

the increase of the sample values, the true value and 

the predictive value begin to appear obvious 

deviation after the 150 cycles. The average relative 

error between the predictive value and the real value 

of the lithium-ion battery is shown in Table 3. 

 

 

 

 

Table 3: The average relative error between the 

predicted value and the real value of the 

lithium-ion battery 
Cycle 

times / 

times 

0-90 91-180 181-270 271-360 

The 

average 

relative 
error /% 

 

0.0386 

 

0.1361 

 

0.9210 

 

2.6121 

 

From Table 3, we can see that in the period of 0 to 90 

cycles, the average relative error is the smallest, and 

the average relative error is the maximum in the 

period of 271 to 360 cycles. 

The relative error between the predicted value 

and the true value of the lithium-ion battery life is 

shown in Figure 10. The minimum relative error, 

forward and reverse maximum relative error between 

the predicted value and the true value is shown in 

Table 4. 

 

 
Figure 10: The relative error between the 

predicted value and the real value 

of the lithium-ion battery life 

 

Table 4: The relative error between the predicted 

value and the real value of the 

lithium-ion battery life 
Minimm relative 

error /% 

Reverse 

maximum 

relative error/% 

Forward 

maximum 

relative error/% 

0.0018 -3.5538 0.2185 

 

As shown in figure 10, we can see that the 

relative error between the predicted value and the true 

value fluctuates between -0.25% and +0.25% before 

150 cycles, which shows that the relative error is 

small. The relative error between the predicted value 

and the true value is in the range of -0.5% to -3.6% 

after 150 cycles, which shows that relative error 

fluctuation is obvious. Overall, the relative error 

between the predicted value and the true value ranges 

from -3.6% to +0.25%, so the prediction accuracy is 

higher. 

As shown in table 4, the minimum relative 

error between the predicted value and the true value 

of the lithium-ion battery life is 0.0018%, the forward 

maximum relative error is 0.2185%, and the reverse 

maximum relative error is -3.5538%. 
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5. Conclusion 

The lithium-ion batteries have been widely 

used in various fields due to their high energy density 

and long service life, but their safety problems are the 

main reasons for the development. The prediction of 

remaining life of a lithium-ion battery has become an 

important research direction. The method of a phase 

space reconstruction support vector machine is 

proposed to predict the remaining life of a lithium-ion 

battery, which solves the problem of single input 

variables, and improves the prediction accuracy. The 

method is also applicable to the field of power system 

load forecasting, state prediction of mechanical 

equipment and so on. 

The following conclusions are drawn as 

follows: 

1) The original test data of the capacity of 

lithium-ion batteries was denoised by the 

wavelet to eliminate the influence of 

temperature and discharge rate, and 

improve the accuracy of prediction results. 

2) The phase space reconstruction of the data 

after denoising was carried out, setting d=5, 

 =1. 

3) A part of the test data from the lithium-ion 

battery capacity was used to train and test 

the model. Here, the training and testing 

data for the 1060 groups of data had been 

measured in the first 700 groups, which 

accounted for 70% and 30%, respectively. 

The capacity of the lithium-ion battery was 

predicted by using the prediction model 

and the remaining 360 sets of data. The 

relative error between the predicted value 

and the true value of lithium-ion battery 

capacity is between -3.6% and +0.25%, 

which indicates that the method of a phase 

space reconstruction support vector 

machine is highly accurate. This method is 

suitable for predicting the remaining life of 

a lithium-ion battery. 
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