
International Journal of Computer, Consumer and Control (IJ3C), Vol. 5, No.4 (2016) 

 

An Improved Short-Term Power Load Forecasting Mechanism 

Based on a Deep Learning Algorithm 
1
 Hao Dong, 

2, *
 Chun-Lai Zhou, 

1
 Zhi-Da Li and 

1
 Yan-Ju Guo 

 

 

Abstract 

Power load forecasting has been known as one 

of the key issues in the field of power grids since 

published in the literature. With the advent of the era 

of an intelligent power grid, a high level of accuracy 

and stability need to be reached in load forecasting. 

Deep Belief Nets [DBN) in deep learning algorithms 

is proposed as a new solution to regression problems 

due to its powerful non-linear modeling capacity. 

With the above-stated features, DBN is applied to 

solve the short-term load forecasting problems. First 

of all, training and modeling processes of DBN are 

detailed herein, and a simple set is then constructed 

through an analysis on the experimental data 

provided by the East - Sfovakia Power Distribution 

Company. Subsequently, the optimal parameters are 

experimentally determined to build a network with 

the minimized error, and finally the trained network 

is applied to load forecast using the 

DeepLearnToolbox - master in Matlab. For validation 

purposes, a comparison is made between the 

forecasted results using DBN and a BP neural 

network, and DBN is found to outperform the 

counterpart in terms of forecast accuracy. In short, 

the deep learning-based algorithm is presented as an 

improved version of short-term load forecasting 

mechanisms, and is believed to be a potential solution 

to relevant issues. 

Keywords: Power systems, load forecasting, DBN, 

deep learning algorithm 

1. Introduction 

Power system load forecasting stands as the 

pillar of power grid scheduling, operation, control 

and other works [ 1]. Since the conceptualized, it has 

been one of key issues in power grid studies [ 4]. The 

short-term load forecasting of a power system is 

mainly used to forecast the electric load over the 

coming hours, a day or even a couple of days. The 

issue of short-term load forecasting has been 

addressed since 1960s, and a tremendous progress 

has been made ever since. 

Up to now, short-term load forecasting can be 

mainly categorized into classic, traditional, and 

intelligent forecasting methods. The intelligent ones 

become the most common approach due to its 

accuracy and stability [ 5], and the mainstream covers 

neural network-based [11] and support vector 

regression (SVR)-based forecast techniques [18]. 

 Nowadays, a high performance mechanism 

must be built for an accurate power load forecast, as 

the scale of grids increases and an increasing number 

of smart grids are deployed. The aforementioned 

neural network and SVR-based algorithms belong to 

the shallow structure algorithms that have difficulty 

to express a complicated nonlinear function which 

effectively gives a limited number of samples. A deep 

learning algorithm, as presented in [21], which has 

been developed rapidly over recent years, is adopted 

herein as an improved way to forecast the power load. 

Since firstly conceptualized by Hinton et al. in 2006, 

deep learning algorithms have brought new hope to 

the disciplines of machine learning and artificial 

intelligence, and with the improvement on the 

original proposal, breakthrough has been seen in the 

fields of speech recognition, computer vision, etc. At 

the same time, deep learning algorithms are believed 

to be a potential solution to regression problems since 

complex functions can be approximated with a 

nonlinear deep-learning network architecture, and 

due to the high performance in learning essential 

characteristics from a small number of samples. 

Developed as a deep learning model for unsupervised 

learning, a deep belief net (DBN) firstly employs an 

unsupervised greedy algorithm to pre-train data step 

by step and then use a supervision algorithm to 

fine-tune the pre-trained data from top to bottom. As 

can found later, adoption of DBN to deal with power 

system load forecasting accounts for the 

outperformance of this work. 

2. Deep Belief Nets (DBN) 

DBN is essentially a kind of generation models 

composed by multilayer neurons, and the neurons 

thereof can be divided into dominant neurons and 

hidden neurons. The former, which constitute visible 

layers, are used to receive the input data, and the 

latter, as the constituents of hidden layers, are 

responsible for extracting the characteristics of the 

received input data. The hidden layers at the bottom 

are designed to extract the characteristic at a low 
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level. With a great number of layers, features can be 

expressed smoothly, which makes it easier to model 

the extracted features. The extracted characteristics of 

each layer are then treated as the input to the next 

layer. 

 

2.1 Restricted Boltzmann Machines 

(RBM) 
DBN is composed of restricted Boltzmann 

machines (RBMs). AS illustrated in Fig.1, an RBM 

involves a visible layer, and a hidden layer, 

respectively symbolized as v  and h , and the weight 

between two layers are represented asW . Neurons in 

an RBM are characterized as follows. There is no 

connection between neurons in the same layer, while 

the neurons in one layer are all connected in the 

other. 

 

Figure 1: The structure of an RBM  

 

RBM is an energy-based model. Given a set of 

states ( v , h ), an energy function is defined as 

 

1 1 1 1

( , ) i i j j i j ij

i j i j

E a v b h v h w
   

     v h  (1) 

  

 

where iv
 represents the i th visible layer unit; 

jh
 represents the 

j
th hidden layer unit; ia

 

represents the bias of the i th neurons in the visible 

layer; jb
 represents the bias of the 

j
th  neurons 

in the hidden layer, and ijw
 the weight between ia

 

and jb
. The joint probability distribution of states 

( v , h ) can be written as 

 
( , )

( , )
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P
Z
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v h
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where Z  denotes the normalization factor, 

also known as the partition function, and expressed as 

 
( ,

,

EZ e v h)

v h

 (3) 

  

 

In practical applications, 
( )P v

 and 
( )P h

, the 

probability distributions of v , h , namely the 

marginal distribution of 
( , )P v h

, must be known, 

respectively expressed: 
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Once the states of all the neurons in one layer 

of RBM are known, the activation probability of each 

neuron in the other layer can be found accordingly. 

Given the state of the hidden layer, the activation 

probability of neuron i  in the visible layer can be 

derived as 

 

( 1 ) ( )i i j ij

j

P v sigmoid a h w  h  (6) 

  

 

The probability of the entire visible layer can 

be defined as 

 

( ) ( i

i

P P vv h h )  (7) 

  

 

Similarly, once the state of the visible layer is 

known, the activation probability of neuron 
j

 in the 

hidden layer is formulated as 

 

( 1 ) ( )j j i ij

i

P h sigmoid b v w  v  (8) 

  

 

As in Eq. (7), the probability of the entire 

hidden layer is expressed as 

 

( ) ( )j

j

P P hh v v  (9) 

  

 

Supposed that S is a set composed of training 

samples, written as 

 
1 2{ , , , }S  n

v v v  (10) 
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where n  is the number of samples, 
l

v

（ 1, ,l n ） represents a sample, and all of the 

samples are independently and identically distributed. 

Subsequently, an RBM training aims to locate the 

optimal parameters to fit the samples. Letting   be 

the parameter matrix, and the training goal is then to 

maximize the likelihood function 

 

1

( ) ( )
n

l

l

L P


 v  (11) 

  

 

For a convenient mathematical treatment, Eq. 

(11) is redefined in a logarithmic form for the reason 

that
( )L 

 and 
)(ln L

 reach respectively 

maximum values at the same value of  . Hence, the 

training objective is now to maximize the 

log-likelihood function 

 

1

ln ( ) ln ( )
n

l

l

L P
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The likelihood function is then maximized 

using stochastic gradient ascent for a single training 

sample v
l

, leading to 
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The first term on the right side of Eq. (13) refers 

to the energy function 
( , )lE







v h
’s expectation under 

the conditional distribution ( )lP h v . ( )lP h v  

represents the probability distribution of the hidden 

layer with the data contained in the visible layer as 

the training sample v
l , and can be easily calculated. 

The second term refers to the energy function 

( , )E







v h
’s expectation under the conditional 

distribution ( , )P v h . ( , )P v h  represents the joint 

probability distribution of the visible and hidden 

layers, which, as opposed to ( )lP h v , cannot be 

easily evaluated in the presence of the normalization 

factor Z . A way to resolve this problem is to 

approximate ( , )P v h  using a sampling algorithm. 

So far, the Contrastive Divergence (CD) algorithm 22 

remains the most popular approach due to its 

excellent performance. 

A k -step CD algorithm (CD- k  algorithm) is 

stated as follows: 

 

1) Symbolize the initial state of the visible 

layer as 0
v ; 

2) Perform Gibbs sampling k  times. In the 

t th ( 1,2, ,t k ) sampling, get 1t
h  

using 
1( )tP 

h v , and then, get t
v ; 

3) Approximate 
,

( , )
( , )

E
P







v h

v h
v h  in Eq. 

(13) as 
( ,

( )
k

k E
P








h

v h)
h v  using the 

sampling results in step 2. 

 

Through the CD- k  algorithm (13) can be 

approximated, and the value of the parameter matrix 

  can be found as well. In most cases, acceptable 

results can be seen by one time evaluation of the CD 

algorithm. 

 

2.2 The Modeling and Training of DBN 
As explicitly stated previously, a DBN is made 

up of RBMs, which consists of a visible layer, 

multiple hidden layers, and an output layer. The 

visible layer of the first RBM serves as the visible 

layer and doubles as the input layer of the DBN. The 

visible layer of the second RBM acts as the hidden 

layer of the first RBM and doubles as the first hidden 

layer of the DBN. The hidden layer of the second 

RBM functions serves as the second hidden layer of 

the DBN, etc. In this manner, a DBN can be 

constituted. Suppose that there are a total of m  

layers, including the hidden layers 1 2 1, , , mh h h   

and the output layer mh
; vector x  represents the 

input, and the 1m  underlying network layers are 

made up of RBMs. The first stage of a training is to 

obtain the weight of the generative model through 

pre-training using an unsupervised greedy algorithm. 

In this stage, the first RBM, involving layers 0 1,h h
, 

is trained as described in Section 1.1 to achieve 

energy balance, and the output thereof is then taken 

as the input to the second RBM. This process is 

repeated until the last RBM training is finished. After 

the pre-training, the target output corresponding to 

the input x  is set to 
y

, and the output is set to 
y
. 

Construct a loss function with the supervisory signal 
y

, and train the network in a supervised way using 

the gradient descent method and fine-tune the 

parameters 23. The training process is illustrated in 

Figure 2. 
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Figure 2: Illustration of a DBN training 

3. DBN-Based Modeling and Result 

Analysis 

Design parameters, e.g. the number of the 

hidden layers, the number of the neurons in a hidden 

layer, etc, must be specified for the construction of a 

DBN, according to available load data. In the 

following section, the above-stated deep learning 

algorithm will be applied to the load forecasting of a 

power grid. 

 

3.1 Data Selection for Training and 

Testing Purposes 
Experimental data is provided by the East - 

Sfovakia Power Distribution Company, for the load 

forecasting contest held by the European Network of 

Excellence on Intelligent Technologies for Smart 

Adaptive Systems (EUNITE) in 2001. The load data 

were recorded at a sampling period of 30 minutes 

over the time span between 1997, 1998 and January 

1999. 

Fig. 3 illustrates a comparison among the one 

day load curves on randomly selected dates, i.e. 

1997.5.10, 1998.9.11 and 1999.1.12. It is found that 

curves share the same tendency, although not in a 

good agreement. The curve trend declines first, and 

then rises gradually to a certain level during the 

working time. It then oscillates within a certain range, 

and peaks in the evening after a brief drop. The load 

change during the day is certain to have a rule to 

follow, and there must exist a correlation between the 

load values at neighboring time instants. 

 

Next, an analysis on the load variation over a 

one-week observation period, i.e. 336 pieces of data, 

is made as follows. For illustration purposes, Fig. 4 

gives three load curves over the time frames 

1998.2.9-2.15, 6.22-6.28, and 10.12-10.18. There is 

an obvious gap between the load on weekdays and 

weekend, and even an amount of load fluctuation 

within a workweek too. The observation periods are 

roughly 4 months away each other, and it is hence 

evident that the load curve is highly correlated to the 

dates. In other words, the day must be made for a 

forecast.  

categorized in advanced in terms of the load 

level, and the time span between the dates of a 

selected sample and a predicted outcome must be 

short for the sake of accuracy. 
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(c) 

Figure3: Respective load curves measured on: (a) 

1997.5.10; (b) 1998.9.11; (c) 1999.1.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4: Comparison on load curves over three one-week observation periods in 1998 

 

 

The load data over the 14 week span: 

1998.4.20-1998.7.26 are chosen as a training set, 

while those over the 6 week time span: 

1998.7.27-1998.9.6 are as a test set. When load 

forecast at a time instant is conducted, the load values 

at the 5 consecutive time instants right before the 

above-stated time instant, but in previous days of the 

same type in terms of power load, are taken as the 

remaining 5. In simple terms, week days and 

weekend must be categorized in advance as a way to 

minimize the load forecast error. 

 

3.2 Results and Discussion 
The presented load forecasting algorithm is 

realized using the DeepLearnToolbox - master in 

Matlab and all data in the sample set, constructed in 

2.1, are normalized to [0,1] by 

 

min

max min

ˆ
x x

x
x x





 (14) 

  

 

where x  represents the load value at current time 

instant, maxx and minx  represent the maximum and 

the minimum load over a whole day, respectively. 

Through training and testing, the design 

parameters of a DBN are chosen as follows. There is 

one hidden layer containing 8 neurons and 5 

numepoch. 

For illustration purposes, the effects of the 

number of neurons in the hidden layer and numepoch 

on the forecasting accuracy are demonstrated by the 

example of 1998.8.31 in Figs. 5-6, respectively. In 

Fig. 5, the red stepwise curve represents the actual 

load value, while the blue, green, and yellow ones 

represent the predicted values with 6, 8, and 10 

neurons, respectively. In Fig. 6, the piecewise linear 

curve in red represents the actual load value as in Fig. 

5, while the green, yellow, and blue bars represent the 

predicted values with 3, 5, and 7 numepochs, 

respectively. Thus, it is evident that the numbers of 

neurons and numepoch demonstrate a strong effect 

on the forecast accuracy. 
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Figure 5: A family of load forecast curves with the number of neurons in the hidden layer as a parameter 

 

 
Figure 6: Comparison on forecasted load with different numpochs 

 

For validation purposes, Fig. 7 illustrates a 

comparison among the forecasted results, using DBN 

and BP algorithms, and the actual load curve on 

1998.8.31, and the comparison, including forecast 

errors, is presented in a tabular form as 

 

 

 
 

Figure 7: Comparison among a real load curve and the forecasted results using DBN and a BP neural 

network 

 

Table 1: the Mean Absolute Percentage Error 

(MAPE) can be calculated according to the data in 

Table 1, defined as 

 

1

1
( )

l
i i

i

i i

a p
MAPE X

l a


   (15) 

  

 

where l  is the number of the elements contained in 

the testing sample set, ia  and ip  represent the 

actual and predicted load values of the i th sample, 

respectively.  

The outperformance of DBN is demonstrated 

by an MAPE of 1.68% as compared with 3.43% by a 

BP counterpart, meaning that DBN is validated to 

provide an improved short-term load forecasting 

accuracy. 
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Table 1: Tabular representation of Figure 7 

 

 

 

4. Conclusions 

This paper presents a deep learning-based 

algorithm for the short-term load forecast of a power 

system, and it is as expected to outperform a BP 

counterpart. 

As the scale of micro grids increases, 

photovoltaic, wind power generation systems and 

other renewable energy sources are configured in a 

way that makes it difficult to predict the power load, 

meaning that the development of an accurate load 

forecasting mechanism is seen as required, and it is 

schedule as a successive project in the very near 

future to forecast the load of a hybrid 

photovoltaic-wind power generation system. 
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