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Abstract 

Involving Latin hypercube sampling and a 

cumulant method, a novel hybrid method is presented 

herein to analyze the probabilistic load flow of 

distribution grids. As the first step, a linear model is 

established to describe the behaviors of a 

probabilistic load flow. Each comulant of input 

random variables is evaluated in the linear model 

using Latin hypercube sampling and the conventional 

numerical method. Then the cumulants of output 

random variables are found using a Gram-Charlier 

expansion, which is used to obtain the cumulative 

distribution functions (CDFs) of the output random 

variables. The outperformance of this novel 

algorithm over a conventional counterpart is 

demonstrated in a case study. This proposal shows a 

good performance agreement with the counterpart, 

which provides a higher accuracy, and can be viewed 

as a reliable means for electrical dispatch analysis.  

Keywords: Distribution Grids, Probabilistic load 

flow; Cumulant method; Latin hypercube sampling 

1. Introduction 

A microgrid refers to a small-scale power 

supply network with cogeneration at low voltage 

levels, which supplies electricity or heat load to a 

small community, such as residential areas, suburbs, 

industrial parks or other public communities [1]. A 

microgrid appears as an integration between 

distributed power generation systems and loads at the 

voltage level provided by a distribution network [2]. 

In most cases, generators and energy sources 

integrated on a microgrid are renewable and 

alternative, which generate power at the above-stated 

voltage level [3].  

Micropower usually consists of a cogeneration 

system, a wind energy conversion system, a 

photovoltaic system, fuel cells, a micro-hydropower, 

other renewable energy sources and energy storage 

devices [4]. A number of micro powers in distribution 

grids, such as wind turbines, fuel cells and solar cells, 

 

 

 

 

 

experience a certain degree of uncertainty in the 

output power provided. This uncertainty would 

demonstrate an impact on the operation analysis of 

distribution grids, such as voltage stability, power 

quality disturbances and the power quality of 

sensitive consumers as well as the distribution of the 

entire distribution grids [5]. It brings about a huge 

challenge to the operation and control of distribution 

grids. Therefore, the issue of PLF has been long 

handled as the basics of the characterization and 

stability analysis of distribution grids.  

It is rather difficult to accurately simulate the 

performance of wind and solar power sources 

because they are susceptible to the ambient 

temperature, the weather and even climate. The 

instability of active power output is expected to 

degrade the stability of a system containing 

micropower, meaning that the voltage quality cannot 

be well maintained. The stochastic nature of 

distribution grids cannot be modeled in a 

deterministic way, while it can be instead well 

described by a stochastic model, such as the 

Monte-Carlo simulation method, the cumulant 

method, the point estimate method and the 

convolution method [6, 7].  

The point estimate method is proposed in a 

number of studies [8, 9] as a way to deal with power 

flow in an unbalanced distribution network involving 

wind and solar power sources. It is developed 

particularly to effectively resolve the uncertainty of 

active power output provided by the wind and solar 

energy sources. However, it requires a huge 

computation load, resulting in a low accuracy, and is 

unable to handle discrete random variables. 

An extended Latin hypercube sampling 

technique [10] is developed as an improved version 

of existing Latin hypercube sampling approaches, 

and is successfully applied to PLF analysis. Sampling 

can be accurately performed on a continuous PDF, 

but unfortunately not on a discrete one.  

In recent times, a novel and high performance 

algorithm has been developed with the aim of 

improving the computational efficiency of PLF 

analysis. This is done by using cumulants and a 

Gram–Charlier expansion [11, 12] to calculate the 

PDF and the CDF of output random variables. Due to 

the uncertainty experienced in a network 

configuration, a combined form of a compensation 

method and the total probability theorem is presented 

in [13] to solve the random variation problem in a 

network configuration, and the probability 

distributions of transmission line flows were 
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evaluated in the same way as in [11, 12]. Nonetheless, 

it is rather difficult to calculate the cumulants of 

some random variables using a conventional 

numerical method.  

In an attempt to suppress the level of load flow 

uncertainty, cumulants and a Gram–Charlier 

expansion are integrated as a novel way to handle the 

PLF of a power system containing a large-scale wind 

power [14], and as an effective way to calculate the 

probability distributions of output random variables. 

This method, as opposed to a Monte Carlo simulation, 

is able to approximate the probability distribution of 

transmission line flows accurately.  

Latin hypercube sampling and a cumulant 

method are integrated herein in such a way that an 

analysis on PLF, involving micro power, is made 

accurate. It is that Latin hypercube sampling is firstly 

performed to analyze the input random variables of 

distribution grids, and each cumulant of the input 

random variables is evaluated using a conventional 

numerical method [15], involving convolution 

operations, and a Gram-Charlier expansion. 

Consequently, the CDFs of the random variables are 

obtained. The accuracy outperformance of this 

proposal over a conventional counterpart is validated 

in an IEEE34 node distribution network [16] at the 

end of this work. 

2. Linear Probabilistic Load Flow 

Model 

The behaviors of power injections [17] and line 

flows in polar coordinates can be simply formulated 

as 
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where W represents the input vector of node power 

injections, H the output vector of line flows, X the 

node state variables, g the power injections function, 

and k the line flows function. 

Then Equation 1 is expressed as 
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where 0X , 0W and 0H are the expected values of 

the node state variables, the power injections and the 

line flows, respectively, related by )( 00 XgW   and 

)( 00 XkH 
.
 X , W and H are the variable 

quantities of the node state variables, the power 

injections and the line flows, respectively. 

As in [18], omitting the third and higher order 

terms, Taylor series expansion of Equation 2 gives 

WSWJX  0
1

0
-

 (3) 

  

WTWSGH  000
 

(4) 

 

where 0J  denotes the last iteration of load flow 

Jacobian matrix, 0S  the inverse Jacobian matrix, 

0G  a matrix of dimension 2b × 2n (b and n stand for 

the numbers of branches and nodes, respectively), 

and 000 SGT  . 

Under normal conditions, the load flow 

problem is solved for the node state variables, the 

expectations of line flows and Jacobian matrices 

using the Newton – Raphson iteration method [19]. 

Due to the additivity of cumulants, convolution 

operations are replaced with additions, and each 

cumulant of the input random variables can be found 

using Latin hypercube sampling and conventional 

numerical methods. Equations (3) and (4) give the 

cumulants of the node state variables and line flows, 

and consequently the CDFs of the output random 

variables are obtained using a Gram-Charlier 

expansion. 

3. Latin Hypercube Sampling 

Method 

According to the characteristics of input 

random variables, cumulants of random variables 

with continuous PDFs are found using Latin 

hypercube sampling method. 

The power injections of wind turbines, solar 

cells and partial load demand are modeled as random 

variables with continuous PDFs. Each cumulant of 

the input random variables is evaluated, using Latin 

hypercube sampling method which provides a 

uniform distribution of sampling points and thus 

converges rapidly. Latin hypercube sampling is 

performed based on an inverse function. Suppose that 

there are a total of m input random variables 

},,,{ 21 mk xxxx  , each of which is sampled N 

times; the CDF of the input random variable
kX is 

represented as )( kkk XFY  , and the interval [0, 1] 

on the vertical axis of CDF is divided into N 

equal-sized subintervals, that is to say, the size of 

each subinterval 1 / N . Consequently, a random 

number is chosen from each subinterval as a sample 

value of the input random variables [20]. 
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4. PLF Calculation 

4.1 Deterministic Power Flow 

The expectations of the node state variables
0X  

and the expectations of line flows 
0H  and Jacobian 

matrices
0J  are found using the Newton- Raphson 

iteration method, and then 0S  and 
0T  are 

evaluated. 

 

4.2. Cumulant Calculation 
The power injection outputs of wind turbines, 

solar cells and partial load demand are modeled as 

the random variables obeying a Weibull, a Beta and a 

normal distribution [21, 22], respectively. Given the 

PDFs of the random variables, a sample set, 

symbolized as  Nxxx ,...,, 21
, is built using the Latin 

hypercube sampling method, and the origin moment 

[23] at each order is given as 
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The cumulant of the power injections output 

random variables with a continuous PDF [23] at each 

order is expressed as. 
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Input random variables with a discrete PDF can 

be calculated using a conventional numerical method. 

Operations of a fuel cell can be categorized into 

normal and failed states, and the active power output 

provided is modeled as a random variable with a 

discrete PDF in the failed state. Given the number of 

fuel cells, the failure rate, the unit capacity, the 

expectations of output power, and the probabilities of 

active and reactive load with discrete PDFs can be 

found. According to the conversion relationship 

between the central moment and cumulants, the 

cumulant at each order can be evaluated using a 

conventional numerical method. 

The input random variable 
iW at node i is 

composed of a random variable of the generator 

output power 
GiW and the load demand 

LiW [24], 

expressed as 

 

LiGii WWW  ⊕  (7) 

  

where ⊕ denotes the convolution operator. 

 

 

 

For the reason that all the power injections are 

independently calculated, the distribution functions of 

the output random variables can be obtained using an 

algebraic operation on cumulants and a series 

expansion rather than a convolution operation. The 

kth-order cumulant  k

iW
 of the total power 

injections at node i can be expressed as 

 
     k

Li
k

Gi

k

i WWW   (8) 

  

where  k
GiW  and 

 k
LiW  represent the kth-order 

cumulants of the generator output power and the load 

demand at node i, respectively. 

The kth-order cumulants )(kX and  )(kH  

of the output random variables can be respectively 

written as 
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where  kW  symbolizes the kth-order cumulants of 

W, and
)(

0

k
S  and 

)(

0

k
T  are composed of the kth 

power of elements of the matrices 0S  and 0T , 

respectively.  

 

4.3. Calculation of Output Random 

Variables 

Three series expansions are involved herein 

when dealing with the probability distributions of the 

output random variables, that is, Gram-Charlier, 

Edgeworth and Cornish-Fisher series expansions [25]. 

Gram-Charlier series expansion is adopted in this 

work due to its accuracy outperformance over the 

other two for non-normally distributed variables, and 

the CDFs of the output random variables can be 

found accordingly. 

 

4.4. Computation Steps  

Step-by-step PLF calculation by a sampling 

and a cumulant method for distribution grids is 

illustrated as a flow chart in Fig. 1, and is 

summarized as follows. 

1) Read basic data, such as the correlation data 

required by deterministic load flow, the 

distribution functions of input random 

variables and a correlation matrix, etc. 

2) Run Newton-Raphson load flow at the 

working point with the basic data. Then the 

values of the output random variables 0X , 

0H , the Jacobian matrix 0J  and the 

inverse Jacobian matrix 0S  at the working 

point are all calculated. 
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3) According to the distribution function of 

the input random variables, choose an 

appropriate method between Latin 

hypercube sampling and a conventional 

numerical method to calculate its cumulants. 

If the input random variables have discrete 

(continuous) PDFs, then the 8th-order 

cumulants of the input random variables are 

calculated by the conventional numerical 

(Latin hypercube sampling) method. 

4) The kth-order cumulants 
 k

iW  of the 

total power injections at node i can be 

calculated by Equation 8, and the kth-order 

cumulants 
)(kX and  

)(kH  of the 

output random variables can be calculated 

by Equation 9, (the 8th-order cumulants 

meet the accuracy demands). 

5) Estimate the probability distributions of the 

output random variables by a 

Gram-Charlier expansion with the 

cumulants obtained in step 4. 

 
Begin

Read basic 

date

The input random variables 

obeys discrete PDF?

Calculated the cumulant of 

input random variables by 

conventional numerical 

method

Calculated the cumulant of input 

random variables by  Latin 

hypercube sampling method

The kth-order cumulant        and        of 

output random variables can be calculated 

by (9)

 Obtain the probability distributions of 

output random variables by Gram-

Charlier series expansion

Output the  results

End

Yes

N

o

0S0H0X
0J

X H

Run Newton-Raphson load 

flow at the working point, 

obtain      ,      ,      and      .   

 

Figure 1: Flow Chart of a PDF Calculation in this 

work 

 

 

 

5. Case Study 

An IEEE 34 node distribution network [16] 

employed for a case study provides a number of 

micro-powers, as illustrated in Fig. 2, a base voltage 

of bV 24.9 kV, a reference voltage of 1.03 p.u. = 

25.647 kV in the root node in all cases refV and a 

base apparent power bS of 1M VA. The accuracy of 

this proposal is validated with the results calculated 

by the conventional cumulant method as a benchmark. 

Simulation model and parameters are detailed as 

follows. 
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Figure 2: IEEE34 node distribution network 

 

As illustrated in Fig. 2, two wind turbines are 

connected to node 15, and 10 fuel cells and a wind 

turbine are connected to node 33; a solar cell array 

and a wind generator are connected to node 34. 

The load demand obeys a normal distribution, 

and all the input random variables are independent. 

The parameters of micropowers are given as follows  

Wind generator: the rated wind speed is 15 m/s. 

The cut-in speed is 4 m/s; the cut-out speed is 25 m/s; 

the rated power is 0.2 MW. The PDF of the wind 

speed at a wind farm is described by the shape 

parameter (k = 3.97) [21] and the scale parameter (c 

= 10.7) of a Weibull distribution function. 

Fuel cells: the rated power is 0.05 MW; the 

failure rate is 0.08, and the mean value is 0.04.  

Solar cells: the rated power is 0.1 MW; the area 

of each solar cell is 2.16 m
2
; the photoelectric 

conversion efficiency of a single solar cell is 13.44%; 

the photovoltaic array has 400 solar cells, and the 

PDF of the solar power is described by the shape 

parameter of a beta distribution function [22] (α = 

0.449933, β = 9.186967).  

For comparison purposes, Table 1 gives the 

mean values  and the standard deviation  of the 

magnitude of voltage, simulated using MATLAB by 

the presented algorithm and the conventional 

counterpart, at specific nodes of the network in Fig. 2, 

where  and  of the phase angle are listed in Table 

2. 
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Table 1: Mean value and standard deviation of the 

magnitude of the voltage at specific 

nodes. 

node 

Voltage magnitude /p.u. 

The conventional 

method 

The proposed 

method 
        

7 0.998858 0.003632 0.999815 0.003791 

12 1.001231 0.006663 1.002948 0.007477 

14 0.999702 0.006804 1.001724 0.00788 

15 1.001231 0.006663 1.001305 0.007320 

19 0.993603 0.008163 0.999157 0.008760 

23 0.986281 0.011832 0.984990 0.012315 

25 0.986273 0.011841 0.988186 0.011934 

30 0.984721 0.011976 0.987922 0.012356 

32 0.984893 0.011946 0.98778 0.012443 

33 0.984625 0.011985 0.990922 0.012541 

34 0.984908 0.011973 0.993363 0.012752 

 

Table 2: Mean value and standard deviation of the 

phase angle of the voltage at specific 

nodes. 

node 

Voltage angle /p.u. 

The conventional 

method 

The proposed 

method 

        

7 0.773133 0.074062 0.771923 0.074902 

12 0.742043 0.076001 0.739503 0.076491 

14 0.871032 0.082418 0.868832 0.082568 

15 0.740043 0.076011 0.737153 0.076851 

19 1.061480 0.098338 1.059660 0.098568 

23 1.399420 0.126940 1.397790 0.127360 

25 1.443948 0.130222 1.442288 0.130612 

30 1.497486 0.134657 1.495556 0.134777 

32 1.539012 0.137623 1.538412 0.139073 

33 1.497486 0.134657 1.496146 0.135367 

34 1.540811 0.137766 1.539541 0.138546 

 

The performance of this proposal is rated in 

terms of the following aspects. 

1) The CDFs of the magnitude in p.u. of 

voltage are at specific nodes, and the 

ARMS of the magnitude of voltage are at 

all the nodes. 

2) The relative error of the magnitude and the 

phase angle of the voltage are at all the 

nodes. 

Accordingly, the performance of this proposal is 

firstly assessed in terms of the average root mean 

square (ARMS) error [26], defined as  

N

MB

ARMS

N

i

ii





1

2)(

        (10) 

where iB  and iM symbolize the CDF values of the 

output random variables calculated by this proposal 

and the conventional counterpart at point i, 

respectively, and N represents the number of the total 

points.  

The performance appraisal is as well made in 

terms of the relative error (  ) [27], defined as  

%100
M

BM

C

CC -
         (11) 

where MC
 and BC

 are the values of output 

random variables calculated by this proposal and the 

conventional counterpart, respectively. 

Figs. 3–6 illustrate a comparison between the 

CDFs obtained by this proposal and the conventional 

counterpart for the magnitude of the voltage at nodes 

7 , 15 , 19  and 34, respectively. Fig. 7 illustrates the 

ARMS distribution, defined in Equation 10, for the 

magnitude of the voltage over all the nodes, and 

indicates an average of 1.0897% and a maximum of 

3.3340% in an IEEE 34 node distribution network. It 

is hence evident that this proposal results in a low 

deviation and a high accuracy when describing the 

probability distribution for the magnitude of the node 

voltage. 

 
Figure 3: CDF comparison for the magnitude of 

the voltage at node 7 

 

 
Figure 4: CDF comparison for the magnitude of 

the voltage at node 15 

 

 
Figure 5: CDF comparison for the magnitude of 

the voltage at node 19 
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Figure 6: CDF comparison for the magnitude of 

the voltage at node 34 
 

 
Figure 7: ARMS distribution for the magnitude of 

the node voltage  

 

Illustrated in Figs. 8–9, there are the elative 

error, defined in (11), of mean value and standard 

deviation of the magnitude of the voltage, 

respectively, and in Figs. 10–11 there are those of the 

phase angle.  

 
Figure 8: Relative error of the mean value of the 

magnitude of the node voltage 

 

 
Figure 9: Relative error of the standard deviation 

of the magnitude of the node voltage 
 

 
Figure 10: Relative error of the mean value of the 

phase angle of the node voltage 

 

 
Figure 11: Relative error of the standard deviation 

of the phase angle of the node voltage 

 

A close observation reveals a maximum 

relative error of 0.8455% in Fig. 8, 0.1076% in Fig. 9, 

0.3020% in Fig. 10 and 0.1450% in Fig. 11. In short, 

this proposal is found to outperform the conventional 

counterpart in terms of accuracy, and is as well able 

to accurately describe the probability distributions of 

the output random variables. 

6. Conclusion 

This paper presents a novel algorithm, 

involving a combined use of Latin hypercube 

sampling and a cumulant method to evaluate the 

probabilistic load flow for distribution grids. 

Simulations are conducted on an IEEE 34 node 

distribution network for the performance comparison 

between this proposal and a conventional cumulant 

counterpart. It gives a good performance agreement 

with the counterpart, and provides a superior 

precision. A sampling process involved can be 

accelerated since evaluations are partially done in an 

analytic manner. This work is presented as an 

efficient way to evaluate cumulants and reduce errors, 

and is validated as a theoretical means for the 

electrical dispatch and the weaknesses analysis in a 

power network. 
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